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TECHNICAL NOTE 2661

A SUMMARY OF DIAGONAL TENSION

PART I - METHODS OF ANALYSIS

By Paul Kuhn, James P. Paterson,

and L. Ross Levin

SUMMARY

Previously published methods for stress and strength analysis of

plane and curved shear webs working in diagonal tension are presented

as a unified method. The treatment is sufficiently comprehensive and

detailed to make the paper self-contained. Part I discusses the theory

and methods for calculating the stresses and shear deflections of web

systems as well as the strengths of the web, the stiffeners, and the

riveting. Part II, published separately, presents the experimental

evidence.

INTRODUCTION

J

The development of diagonal-tension webs is one of the most out-

standing examples of departures of aeronautical design from the beaten

paths of structural engineering. Standard structural practice had been

to assume that the load-bearing capacity of a shear web was exhausted

when the web buckled; stiffeners were employed to raise the buckling

stress unless the web was very thick. Wagner demonstrated (reference l)

that a thin web with transverse stiffeners does not "fail" when it

buckles; it merely forms diagonal folds and f_nctions as a series of

tension diagonals, while the stiffeners act es compression posts. The

web-stlffener system thus functions like a tr_ss and is capable of

carrying loads many times greater than those producing buckling of the
web.

For s number of years, it was customary to consider webs either as

"shear-resistant" webs, in which no buckling takes place before failure,

or else as diagonal-tension webs obeying the laws of "pure" diagonal

tension. As a matter of fact, the state of pure diagonal tension is an

ideal one that is only approached asymptotically. Truly shear-resistant

webs are possible but rare in aeronautical practice. Practically, all

webs fall into the intermediate region of "incomplete diagonal tension."

An engineering theory of incomplete diagonal tension is presented herein

which msy be regarded as a method for interpolating between the two
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limiting cases of pure-diagonal-tension and "shear-resistant" webs, the
limiting cases being included. A single unified method of design thus
replaces the two separate methods formerly used. Plane webs as well as
curved webs are considered.

All the formulas and graphs necessary for practical use are collected
in two sections, one dealing with plane webs and one with curved webs.
However, competent design work, and especially refinement of designs,
requires not only familiarity with the routine application of formulas
but also an understanding of the basis on which the methods rest, their
reliability, and their accuracy. The method of diagonal-tension analysis
presented herein is a compoundof simple theory and empiricism. Both con-
stituents sre discussed to the extent deemeduseful in aiding the reader
to develop an adequate understanding. The detailed presentation of the
experimental evidence, however, is made separately in Part II (refer-
ence 2); a study of this evidence is not considered necessary for
engineers interested only in application of the methods.

FREQUENTLYUSEDSYMBOLS

A

E

G

Ge

H

I

J

L

Le

M

P

Pu

cross-sectional area, square inches

Young's modulus, ksi

shear modulus, ksi

effective shear modulus (includes effects of diagonal

tension and of plasticity), ksi

force in beam flange due to horizontal component of

diagonal tension, kips

moment of inertia, inches 4

torsion constant, imches 4

length of beam, inches

effective column length of upright, inches

bending moment, inch-klps

force, kips

internal force in upright, kips

i
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Q

R

R vt

RR

S

T

d

dc

e

h

hc

he

hR

hu

k

kss

q

t

3

static moment about neutral axis of parts of cross section

as specified by subscript or in text, inches 3

total shear strength (in single shear) of all upright-to-web

rivets in one upright, kips

shear force on rivets per inch run, kips per inch

value of R required by formula (40)

restraint coefficients for shear buckling of web (see

equation (32))

transverse shear force, kips

torque, inch-kips

spacing of uprights, inches

clear upright spacing, measured as shown in figure 12(a)

distance from median plane of web to centroid of (single)

upright, inches

depth of beam, inches

clear depth of web, measured as shown in figure 12(a)

effective depth of beam measured between centroids of

flanges, inches

depth of beam measured between centroids of web-to-flange

rivet patterns, inches

length of upright measured between centroids of upright-to-

flange rivet patterns, inches

diagonal-tension factor

theoretical buckling coefficient for plates with simply

supported edges

shear flow (shear force per inch), kips per inch

thickness, inches (when used without subscript, signifies

thickness of web)

angle between neutral axis of beams and direction of

diagonal tension, degrees
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i_,

8

E

P

(I

(_0

3"

T all

_d

Subscripts:

DY diagonal tens ion

IDT incomplete diagonal tension

PDT pure diagonal tension

F flange

S shear

U upright

W web

all allowable

av average

cr critical

cy compressive yield

e e ffe ct ive

deflection of beam, inches

normal strain

Poisson's ratio

centroidal radius of gyration of cross section of upright

about axis parallel to web, inches (no sheet should be

included)

normal stress, ksi

"basic allowable" stress for forced crippling of uprights

defined by formulas (37)_ ksi

shear stress, ksi

"basic allowable" value of web shear stress given by fig-

ure 19, ksi

flange flexibility factor, defined by expression (19a)
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m_x

ult

maximum

ultimate

R

Z

d

h

Subscripts:

RG

ST

Symbols Used Only for Curved-Web Systems

radius of curvature, inches

curvature parameter, defined in figure 30

spacing of rings, inches

length of arc between stringers, inches

ring

stringer

PLANE-WEB SYSTEMS

i. Theory of the "Shear-Resistant" Beam

Typicsl cross sections of built-up beams are shown in figure I.

When the web is sufficiently thick to resist buckling up to the failing

load (without or with the aid of stiffeners), the beam is called "shear-

buckling resistant" or, for the sake of brevity, "shear resistant." Web

stiffeners, if employed, are usually arranged normal to the longitudinal
axis of the beam and have then no direct influence on the stress

distribution.

If the web-to-flange connections are adequately stiff, the stresses

in built-up beams follow fairly well the formulas of the engineering

theory of bending

Mz (i)
I

q = (2)
I
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with the understanding that the shear flow in outstanding legs of flange

angles and similar sections is computed by taking sections such as A-A

in figure l(a). As is well-known, the distribution of the shear flow

over the depth of the web follows a parabolic law. Usually, the dif-

ference between the highest shear flow in the web (along the neutral

axis) and the lowest value (along the rivet line) is rather small, and

the design of the web may be based on the average shear flow

where QF is the static moment about the neutral axis of the flange

area and QW, the static moment of the web material above the neutral

axis. When the depth of the flange is small compared with the depth

of the beam (fig. l(c)) and the bending stresses in the web are neg-

lected, the formulas are simplified to the so-called "plate-girder

formulas"

(3)

M (4)

s (5)
q = --

which imply the idealized structure shown on the right in figure l(c).

When the proportions of the cross section are extreme, as in fig-

ures l(a) and l(b), formulas (i) and (2) should be used, because the

use of formulas (3) to (9) may result in large errors. In such cases,

the web-to-flange connection, particularly if riveted, is often over-

loaded and yields at low loads. The beam then no longer acts as an

integr81 unit, the two flanges tend to act as individual beams restrained

by the web, and the calculation of the stresses becomes very difficult

and inaccurate.

2. Theory of Pure Diagonal Tension

The theory of pure diagonal tension was developed by Wagner in

reference 1. The following presentation is confined to those results

that are considered to be of practical usefulness, and the method of

presentation of some items is changed considerably. Mathematical com-

plexities have been omitted, and an empirical formula is introduced for

one important item where Wagner's theory appears to be unconservative.
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2.1. Basic concepts.- A diagonal-tension beam is defined as a

built-up beam similar in construction to a plate girder but with a web

so thin that it buckles into diagonal folds at a load well below the

design load (fig. 2). A pure-diagonal-tension beam is the theoretical

limiting case in which the buckling of the web takes place at an infini-

tesimally small load. Although practical structures are not likely to

approach this limiting condition closely, the theory of pure diagonal

tension is of importance because it forms the basis of the engineering

theory of diagonal tension presented in section 3.

The action of a diagonal-tension web may be explained with the aid

of the simple structure shown in figure 3(a), consisting of a parallelo-

gram frame of stiff bars, hinged at the corners and braced internally

by two slender diagonals of equal size. As long as the applied load P

is very small, the two diagonals will carry equal and opposite stresses.

At a certain value of P, the compression diagonal will buckle (fig. 3(b))

and thus lose its ability to take additional large increments of stress.

Consequently, if P is increased further by large amounts, the additional

diagonal bracing force must be furnished mostly by the tension diagonal;

at very high applied loads, the stress in the tension diagonal will be

so large that the stress in the compression diagonal is negligible by

comparison.

An analogous change in the state of stress will occur in a similar

frame in which the internal bracing consists of a thin sheet (fig. 3(c)).

At low values of the applied load, the sheet is (practically) in a state

of pure shear, which is statically equivalent to equal tensile and com-

pressive stresses at 45 ° to the frame axes, as indicated on the inset

sketch. At a certain critical value of the load P, the sheet buckles,

and as the load P is increased beyond the critical value, the tensile

stresses become rapidly predominant over the compressive stresses

(fig. 3(d)). The buckles develop a regular pattern of diagonal folds,

inclined at an angle _ and following the lines of the diagonal tensile

stress. When the tensile stress is so large that the compressive stress

can be neglected entirely by comparison, the sheet is said to be in the

state of fully developed or "pure" diagonal tension.

2.2. Theory of primary stresses.- A girder with a web in pure

diagonal tension is shown in figure 4(a). To define this condition

physically, assume that the web is cut into a series of ribbons or strips

of unit width, measured horizontally. Each one of these strips is

inclined at the angle _ to the horizontal axis and is under a uniform

tensile stress q.

The free-body diagram of figure 4(b) shows the internal forces in

the strips intercepted by the section A-A combined into their resultant

Since all strips have the same stress, the resultant is located at mid-

height. The horizontal component HD (= S cot _) of D is balanced

De
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by compressive forces H in the two flanges.

be equal, D being at mid-height, therefore

The two forces H must

H = - S_ cot _ (6)
2

The total flange force is thus

F gcot = (7)
h h 2

In the free-body diagram of figure $(c), each strip is cut at right

angles, giving the stress-carrying face a width of sin e; the force on

each strip is therefore _t sin _. The number of strips intercepted by

section A-A is equal to h cot m; the total force D on all strips is

therefore

D = at sin _ x h cot _ = sht cos

But from statics

D

S

sin

Therefore

S

sin
-- = uht cos

or

S 2S
a. -- = (8)

ht sin _ cos ht s in 2m

The upright is under compression, counteracting the tendency of the

diagonal tension to pull the flanges together (fig. _(d)). The force PU

acting on each upright consists of the vertical components of the forces

acting in all the strips appertaining to each upright, that is, in d

i
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strips (since the strips have unit width horizontally). But as Just

found, the vertical component of h cot _ strips is equal to S;
therefore

9

PU : S : : d : h cot _

or

d tan m (9)

If each strip is connected to the flange by one rivet, the force on this

rivet is equal to the force _t sin e in the strip. Since the strips

are of unit width horizontally, this is the rivet force per inch run,

designated by R". Substitution of the value of q from formula (8)

gives

R" = s (lO)
h cos

The angle _ is usually somewhat less than 450; consequently, a slightly
conservative value for most cases is

R" _ 1.414 s (zoa)
h

All stresses or forces are now known in terms of the load P, the

dimensions h and d of the beam, and the angle e. To complete the

solution, the angle _ must be found; the principle of least work may
be used to find it.

The internal work in one bay of the beam is given by the expression

W = _ dht + -- AUeh + -- AFd2E 2E

(The subscript e on AU is necessary only for single uprights and will

be explained in connection with formula (22). For double uprights it is

unnecessary.) By substituting into this expression the stress values in

terms of S that follow from formulas (8), (9), and (6), which are

2S 2T
a : : (ii)

ht sin 2_ sin 2_
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vdtSd tan _ - tan _ (12)
aU - hAUe AUe

S Tht
aF = - -- cot c_- cot _ (13)

2AF 2AF

differentiating to obtain the minimum, and omitting the constant factor
S2/E, there results

dW 8d cos 2_ d2 sin m d cos

d_ ht sin32_ hAUe cos3_ 2AF sin3

Substituting into this expression the values for the stresses given by

equations (Ii), (12), and (13) and equating to zero results in the

relation

4 cos 2m _U _F
-_ + - 0

sin22m cos2m sin2m

from which

F
tan2c_ = (14)

a- _U

If o, _F, and SU are expressed in terms of S and _, trigonometric

equations for m are obtained; the most convenient one is

i+ ht

tan4 _ = _FF (15 )

dt
I +

AUe

After the angle _ has been computed by formula (19), the stresses can

be computed by formulas (ll) to (13). In plane webs, the angle

generally does not deviate more than a few degrees from an average value

of 40o.
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2.3. Secondar_ stresses.- Formulas (ii), (12), and (13) define the

primary stresses caused directly by the diagonal tension. There are also

secondary stresses which should be taken into account when necessary.

The vertical components of the web stresses s acting on the flanges

cause bending of the flsnges between uprights as shown in figure 9(a).

The flange may be considered as a continuous beam supported by the

uprights; the total bending load in one bay is equal to PU and, if it

is assumed to be uniformly distributed, the primary maximum bending

moment occurs at the upright and is

Sd2tan

Mmax = 12h (16)

In the middle of the bay there is a secondary maximum moment half as

large.

If the bending stiffness of the flanges is small, the deflections

of the flanges indicated in figure 9(a) are sufficient to relieve the

diagonal-tension stress in those diagonal strips that are attached to

the flange near the middle of the bay. The diagonals attached near the

uprights must make up for this deficiency in stress and thus carry higher

stresses than computed on the assumption that all diagonals are equally

loaded. In figure 9(b), this changed distribution of web stress is

indicated schematically by showing tension diagonals beginning only near

the uprights. The redistribution of the web tension stresses also causes

a reduction in the secondary flange bending moments. On the basis of

simplifying assumptions, these effects have been evaluated by Wagner

(reference I) and may be expressed by the following formulas:

2S

_max = (1 + C2)ht sin 2c_ (17)

Sd2tan_ (18)
Mmax = c3 lah

Graphs for the factors C 2 and C3 will be given under section h, where

all graphs are collected for convenience of application. The factors are

functions of the flange-flexibility parameter axl, which is defined by

md = d sin _ _(_ +
(19)
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where the subscripts T and C denote tension and compression flange,
respectively. For practical purposes it is sufficiently accurate to use
the following simplified form of this formula, in which the angle _ is
assumedto be slightly less than 45° , and the sumof the reciprocals is
replaced by four times the reciprocal of the sum

a_l _ 0.Td _lh( t+ Ic)
(19a)

In reference I, Wagner gave a second value of a_, 1.25 times as large as

the value given by equation (19a), based on a different derivation, and

recommended that the second value be used because it is more conservative.

Previous papers have usually quoted this more conservative value of a_,

but it appears to be more conservative than necessary; it was based on the

assumption that d >> h, a condition which is now avoided in actual

designs.

2.4. Behavior of uprights.- The uprights in a dlagonal-tension beam

may be double (on both sides of the web) or single; both types are always
fastened to the web. The buckling strength of the uprights cannot be

computed immediately by ordinary column formules because the web restrains

the uprights against buckling. As soon as an upright begins to buckle out

of the plane of the web, the tension diagonals crossing the upright become

kinked at the upright, and the tensile forces in the diagonals develop

components normal to the web tending to force the upright back into the

plane of the web, as indicated by the auxiliar_ _ sketch in figure 6(a).

The restoring force exerted by the dlagonal-temsion band upon the upright

is evidently proportional to the deflection (Gut of the plane of the web)

of the upright at the point where the diagonal crosses it. The upright

is therefore subjected to a distributed transverse restoring load that is

proportional to the deflection; the problem of finding the buckling load
of such a compression member is well-known, a_d methods of solution may

be found in reference B, for instance. Wagner has given the results of

calculations for double uprights with clamped or pinned ends in the form

of curves (fig. 6(b)), showing the ratio PU/BUE as a function of the

ratio d/h, where PU is the buckling load of the upright and PUE the

Euler load, that is, the buckling load that the same upright would carry

if it were a pin-ended column not fastened to the web.

The assumption of clamped ends would be _ustified only if the ends

of the uprights were fastened rigidly to the flanges and if, in addition,

the flanges had infinite torsional stiffness. Usually, beam flanges

have a rather low torsional stiffness and thus do not Justify the assump-

tion of clamped ends for the uprights. Tests of beams with very thin

webs have furthermore shown that even Wagner's curve for pin-ended double
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uprights as shown in figure 6(b) is entirely too optimistic for low

values of d/h. The straight line marked "Experiment" in figure 6(b)

(from reference 4) is slightly conservative for the average of the tests

sveilable, but several test points fall so close to it that only a large

number of new tests could justify a higher curve (see Part II (refer-

ence 2)). In order to make this experimental curve applicable to

uprights not in the Euler range, it may be expressed as a formula for

reduced or effective column length of the upright in the form

= h (20)

- 2(d/h)

which is valid for d < 1.5h; for d > 1.5h, of course, Le = h. In

practice, d is seldom chosen larger than h in order to keep the

flange-flexibility factor _d low.

Single uprights are, in effect, eccentrically loaded columns. As

long as the load is infinitesimal, the eccentricity e is evidently the

distance from the plane of the web to the centroid of the upright. If

the uprights are very closely spaced, the web between uprights must

deflect (on the average) in the same manner as the uprights. Under this

condition, the eccentricity is equal to the initial value e all along

the upright and does not change with increase in load. The upright is

therefore designed by the formulas used for an eccentrically loaded com-

pression member with negligible deflection; the bending moment in the

upright is ePu, and the stress in the fibers adjacent to the web is

e2)
= AU \ _ AU e

(21)

where p is the radius of gyration of the cross section and AUe is

the effective cross-sectional area, which is evidently defined by the

expression

AU (22)
AUe = e2

i +
p2

Approximate values of the ratio AUe/A U are shown in figure 7 for typical

i_ single uprights. It should be noted that the web sheet contributes no

i_ "effective width" to the upright area under the condition of pure diagonal

_i___ tens ion cons_idered here. Formula (22)would also apply to a double upright
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not symmetrical about the web. In most cases, however, double uprights

are symmetrical; in this case, e = O, and thus AU e = AU.

If the uprights were extremely wldely spaced, the major portion of

the web would remain in its original plane (on the average, i.e.,

averaging out the buckles). Consequently, the compressive load acting

on the uprights would remain in the original plane, and the upright

would act as an eccentrically loaded column under vertical loads, except

for the modification introduced by the elastic transverse support

furnished by the web. However, barring freak cases, extremely wide

spacing of the uprights would result in the nonuniform distribution of

diagonal tension shown in figure 5(b). In this configuration, the direc-

tion of the compressive load (as seen in a plane transverse to the plane

of the web) is determined essentially by the configuration of the web in

the vicinity of the upright-to-flange Joint; conditions are therefore

again similar to those in the case of the closely spaced uprights. On

the basis of this consideration, formulas (21) and (22) are being used

for all single uprights regardless of spacing, and the available experi-

mental evidence indicates that this practice is acceptable at the present

stage of refinement of the theory.

2.5. Shear deformation of dlagonal-tenslon web.- The shear deforma-

tion of a web working in pure disgonal tension is larger than it would

be if the web were working in true shear (a condition that could be

realized by artificially preventing the buckling). The effective (secant)

shear modulus GpD T of a web in pure diagonal tension can be obtained by

a simple strain-energy calculation as follows: Consider one bay of the

web system and denote by 7 the shear deformation of the bay. The

external work performed during loading is

iSTd=l s S
wI = htGpD T

d

The internal strain energy stored is

W 2 = 02 dth + _U--_2AUeh + _F--_2AFd
2E 2E E

Now o, OU, and aF can be expressed as functions of S by formulas (ii)

to (13); after transposing terms and canceling, there results the formula
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E 4
m

GpD_ sin22_

dt ht
+ -- tan2_ + -- cot2_

AU e 2AF

which may be transformed with the aid of equation (19) into

(23a)

E (2 dt ht 2_1=2 +--sin +--cos
AU e 2AF

(23b)

or

In beams of the type considered here, the flanges are usually so heavy

that the term containing the flange area is negligible. Equation (23a)

can then be simplified to

E 2
--=-- (23d)

GpDT sin2_

When the uprights as well as the flanges_are very heavy, the angle

becomes equal to 49 °, and

E

GpD T = _ (23e)

3. Engineering Theory of Incomplete Diagonal Tension

The two preceding sections presented "analytical" theories of the

shear-resistant beam and of the beam in pure diagonal tension. An

engineering or "working" theory will now be developed that connects these

two analytical theories. It may be considered as a method of interpo-

lating between the two analytical theories, guided by an empirical law

of development of the diagonal tension. The purpose of this section is

to present the engineering theory, to explain physical considerations

and certain details, to describe (where it seemed advisable) how empirical

data were obtained, and to indicate the accuracy of the method. The sec-

tion thus forms the basis for section 4, which gives in concise form all

the information needed for actual analysis. This division of subject
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material between two sections entails some disadvantages for a first

reading; however, the advantage of having section 4 in the form of a

"ready reference" section for practical application, unencumbered by

background material, is felt to outweigh the disadvantage.

3.1. General considerations.- When a gradually increasing load is

applied to a beam with a plane web, stiffened by uprights and free from

large imperfections, the following observations may be made: At low

loads, the beam behaves in accordance with the theory of the shear-

resistant beam; the web remains plane and there are no stresses in the

uprights. At a certain critical load, the web begins to buckle; these

buckles are almost imperceptible, and very careful measurements are

necessary to define the pattern. As the load is increased more and

more, the buckles become deeper and more distinct and the buckle pattern

changes slowly to approach more and more the pattern of parallel folds
characteristic of well-developed diagonal tension (fig. 2). The process

of buckle formation and development is accompanied by the appearance and

development of axial stresses in the uprights.

It is clear, then, that the theory of the shear-resistant beam can

be verified directly by stress measurements at sufficiently low loads;

It is furthermore possible (although rare) that a beam may remain in the

shear-resistant regime until web fracture or some other failure takes

place. The state of pure diagonal tension, however, is a theoretical

limiting case; a physical beam msy approach this limit fairly closely,

but it can never reach the limit, because some failure will take place

before the limit is reached. A direct experimental verification of the

theory of pure diagonal tension is thus impossible. Fortunately the

theory is so simple (as long as the effect of flexibility of the flanges

may be neglected) that experimental verification is unnecessary.

Physical intuition suggests, and measurements have confirmed, that

the state of pure diagonal tension is approached fairly closely when the

applied load is several hundred times the buckling load. Beam webs that
fail at loads several hundred times the buckling load are encountered in

practice, but they are the exception rather than the rule. For the great

majority of webs, the ratio of failing load to buckling load is much less,

and the theory of pure diagonal tension gives poorer and poorer approxi-

mations as this ratio decreases.

In order to improve the accuracy of the stress prediction, It is

necessary to recognize that mostpractical webs work in incomplete

diagonal tension, or in a state of stress intermediate between true shear

and pure diagonal tension. The first suggestion for such an improvement

was made by Wagner (reference _) for curved webs and was adopted by

others for the design of plane webs. The suggestion as applied to the

braced frame of figures 3(a) and 3(b) may be stated as follows: As the

load P increases from zero, both diagonals work initially. At a certain

I

!
q
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load Pcr, the compression diagonal will buckle, the load in the diagonal

being Dcr. For any further increase in the load P, the load D in the

compression diagonal is assumed to remain constant and equal to Dcr.

Applied to the sheet-braced frame of figures 3(c) and 3(d), the assump-

tion may be phrased as follows: If the applied shear stress T iS

larger than Tcr , only the excess _ - Tcr ) above the critical shear is

assumed to produce diagonal-tension effects.

Let TDT denote that portion of the applied shear stress T which

is carried by diagonal-tension action. The mathematical formulation of

the assumption then becomes

T _ = T 1 T C r = T l ( 2 _ )

The "applied shear stress" T(=S/ht) is evidently a nominal stress, that

is to say, it does not exist physically as a shear stress.

3.2. Basic stress theorv.- The use of formula (24) improves the pre-

diction of the upright stresses, but the improvement is of significant

magnitude only for a narrow range of proportions. An improved theory was

therefore sought, with the following desired characteristics:

(i) The theory should cover the entire range of beam proportions,

from the shear-resistant to the pure-diagonal-tension beam

(2) The theory should be as simple as possible, because each air-

plane contains hundreds of elements that must be designed by considera-

tions of diagonal-tension action

A theory of this type has been developed in a series of steps (refer-

ences _ and 6 to 9). This section presents that portion of the theory

which deals with the calculation of the primary stress conditions.

The applied nominal shear stress T is split into two parts: a

shear stress TS carried by true shear action of the web, and a por-

tion TDT carried by diagonal-tension action. Thus

T= TS + TDT
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T_ = k_ ; _s = (1 - k)_ (29)

where k is called the "diagonal-tension factor." It may be noted that

formula (24) is a special case of this general formulation, with the

factor k defined by

k = 1 Tcr (26)
T

by virtue of the assumption made. In the improved theory, the factor k

is still considered to be a function of the "loading ratio" T/Tcr but

was determined empirically from a series of beam tests. The empirical

expression (reference 4) is

k = tsnh .9 lOgl0 (" g _cr) (27)

T

For -- < 2, expression (27) is approximated closely by the expression
Tcr

1 (27a)

whe re

T - T cr
p =

T + Tcr

For T _ Tcr, the factor k is zero and the web is working in true

shear. As the loading ratio T/Tcr approaches infinity, the factor k

approaches unity, which denotes the condition of pure diagonal tension.

Figure 8 shows the state of stress in the web for the limiting

cases (k = 0 and k = 1.0) and for the general intermediate case.

Superposition of the two stress systems in the general case gives for

along the direction and the stress a2 perpendicular
the stress Ol

:I to this direction, respectively,

_I °1 = _ + T(I - k)sin 2_

q

(28a)
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a2 = -T(I - k)sin 2_ (28b)

(For these equations, and for all equations of this section, it is

assumed that the flanges are not sufficiently flexible to produce sig-
nificant nonuniformlty of stress.)

The value of k given by expression (27) is less than that given

by (26) except for the limiting cases (----= 1.0 and T-l----+_. This
Vcr Tcr I

fact implies that the true shear stress in the sheet must develop values

larger than Tcr , contrary to the assumption on which expression (24) is

based. At first glance, the assumption that the diagonal compressive

stress does not increase beyond the critical value appears plausible,

particularly if one bears in mind the picture of the braced frame in

figure 3(b). However, it is well-known that deeply corrugated sheet can

carry very high shear stresses before collapsing. In the light of this

fact, it does not seem reasonable to assume that the hardly perceptible

buckles which form in a web loaded Just beyond the critical stress

deprive the sheet immediately of all ability to carry any further increase

in diagonal compressive stress and consequently any increase in true
shear stress.

If the sheet is thus assumed to be able to carry diagonal compressive

stress, it is consistent to assume that it can also carry compressive

stresses parallel to the uprights or to the flanges; in other words, some

effective width of sheet should be assumed to cooperate with the uprights

and the flanges. Trial calculations for the upright stresses developed

in test beams gave satisfactory agreement when the effective width working
with the upright was assumed to be given by the expression

d e

T: o.5(l - k) (29)

The effective width of 0.5d immediately after buckling may be thought of

as produced by the sinusoidal distribution of stresses indicated in fig-

ure 9. The assumption of linear decrease with k was made as the

simplest expedient possible.

With the assumptions made so far, the formula for the stress in an

upright is obtained by modifying formula (12), which is valid for pure
diagonal tension, to read

kv tan

aU = - A,,
Ue

dT + o.5(l - k)

(3oa)
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Similarly, formula. (13) for the flange stress produced by the diagonal

tension becomes

kT cot

2A F
--+ 0.5(1 - k)
ht

(30b)

Formula (14) for the angle m may be written in the modified form

tan_ = _ - EF (30c)

- _U

This form is more general than formula (14), because it is applicable

when web, flanges, and uprights are made of materials having different

Young's moduli. The strains appearing in formula (30c) are defined by

aF _U
_F = -_- ; CU = "_" ; :{(1 -.°2)

with the stresses _i and s2 defined by equations (28a) and (28b);

there fore,

= 7_ _ 2k + (i- k)(1 + _)sin 2c_E in'2 
(30d)

For practical purposes, sin 2m may be taken as unity, because the

angle m lies between 45 ° and 38 ° for almost all reasonably well designed

webs. Expression (30d) then becomes

¢ _ _ + _ + k(l - _)]
(3oe)

All charts and graphs for plane diagonal tension shown in this paper were

calculated by use of this approximation. (For curved webs, the approxi-

mation is too inaccurate because the angle = assumes much lower values.)

It might be noted that the buckle pattern immediately after buckling

is not a pattern of parallel folds; this pattern is only approached asym-

totically. Consequently, the term "angle of folds" has, strictly speaking,

no meaning for incomplete diagonal tension, but it is sometimes used for

the sake of brevity instead of the more correct term "angle of diagonal

tension."
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The stress component v(l - k) sin 2_ in formula (28a) arises from

the true shear existing in the web. This component affects the diagonal

web strain c and thus the angle m. The state of diagonal tension

produced by the component kS of the applied shear load is therefore

not s state of "pure" diagonal tension. It is a state of "controlled"

diagonal tension in which the angle _ is affected by the simultaneous

presence of a true shear stress in the web. In order to bring out this

distinction where necessary, the following set of symbols is used:

DT "controlled" diagonal-tension component of the total stress

system when 0 < k < 1.O

IDT (for incomplete diagonal tension) total stress system
when 0 <k < 1.0

PDT (for pure diagonal tension) stress system when k = 1.0

The "coupling" between diagonal tension and shear in the IDT case

makes it impossible to calculate the angle _ directly, as in the

PDT csse. Equations (30) must be solved by successive spproximations.

A value of _ is assumed, and equations (30a), (JOb), and (30d) are

evaluated. From the resulting stresses, the strains are computed and

inserted into equation (30c). If the angle computed from (30c) does

not agree with the assumed angle, a new computation cycle is made with

s changed value of _. With s little experience, three cycles are

usually sufficient. For most practical problems, the necessity of going

through this procedure hss been eliminated by the preparation of a chart

(section 4) which gives the snswer directly for beams with flanges

sufficiently heavy to make eF negligible compared with _.

In keeping with the separation of the total stress system in a web

Into a shear part and a dlsgonal-tension pert (expressions (25)), the

shear deformation of a web may be separated into corresponding parts

7ID T = 7S + 7DT

Wlth 7 = ! and T = I, this relation becomes
G

i l-k k
----- = -- + -- (31a)
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where GDT is evaluated by using formula (23a) in the modified form

appropriate to the DT case

tan2_ cot2_
E _ 4 + +

GDT sin22_ AUe+ 0.5(1 k) 2AF_ --+ o.5(i - k)
dt ht

(31b)

In most beams, the flange area is sufficiently large to permit neg-

lecting the last term in formula (31b). With this simplification,

the ratio GIDT/G becomes a function of the two parameters AUe/dt and

k (or T/Tcr) and can therefore be given on a simple graph (section 4).

In some rare cases, it may be desirable to estimate the shear defor-

mation up to the failing load of the beam. For some materials, it will

then be necessary to multiply GID T by a plasticity correction factor.

A graph showing this factor for 24S-T3 sheet is given in section 4. The

graph represents an average curve derived from a series of tests on

square panels, stiffened by varying amounts to produce different degrees

of diagonal tension.

3.3- Remarks on accuracy of basic stress theory.- In the strength

design of webs, reasonably accurate results may be achieved with the aid

of empirical data without benefit of a theory of diagonal tension. The

uprights, however, cannot be designed with any degree of reliability

without benefit of such a theory. The appraisal of a theory therefore

should concern itself primarily with the accuracy of predicting the

upright stresses.

The engineering theory given in section 3.2 contains two main elements

strongly affecting the upright stresses that require verification: expres-

sion (27) for the diagonal-tension factor k and expression (29) for the

effective width of sheet. It has not been considered important to date

to attempt separate verification of these two items; special test speci-

mens with construction features not representative of actual beams would

be required, and the elaborate instrumentation necessary would preclude

the possibility of making checks over a wide range of proportions. The

method actually chosen was to measure the upright stresses in a series

of beams. Such measurements constitute only a check on the accuracy with

which expressions (27) and (29), used in conjunction, predict the upright

stresses, but this type of check is considered reasonably satisfactory

except perhaps for thick webs.

The direct evidence used originally to establish the empirical

relation (27) and to chose simultaneously the assumption (29) was obtained
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by analyzing the upright stresses measured on 32 beamstested by the
NACA. (See Part II (reference 2).) The criterion used for fixing the

relations was that no unconservative (low) predictions of upright stress

should result for an_ one test beam as long as the load was below about

2/3 of the ultimate. It was possible to fulfill this criterion with-

out being unduly conservative on the average (see Part II for details).

On the average, the predictions were about lO-percent conservative (for

loads below 2/3 of the ultimate). In 20 percent of the cases, the pre-

dictions were about 20-percent conservative. In more than half of the

cases where the prediction was 20-percent or more conservative, the

upright stress was quite low at 2/3 load (about 7 ksi); the estimated

probable accuracy of the upright stress under this condition was about

lO ;_rcent.

At high loads, predicted values of the upright stresses were con-

siderably lower than the observed values for some beams. Analysis of

the data - more particularly those obtained later on thick-web beams -

tended to indicate that the predictions would be low when the shear

stress in the web exceeded the yield value. The explanation is probably

that yielding of the web has a double effect: It causes the effective

width of sheet cooperating with the uprights to decrease more rapidly

and it causes the diagonal tension to develop more rapidly than in the

elastic range. No method of correcting for these effects of yielding

has been developed as yet.

Errors in predicted upright stresses do not entail errors of the

same magnitude in the predicted failing loads of beams. The first reason

for this fact is that the upright stresses increase at a higher rate than

the load. The second - usually more important - reason is that any over-

estimate of the upright stress resulting from an error in k will be

accompanied by an overestimate of the allowable stress, because the

allowsble upright stresses depend on k. For instance, for the two beams

used as numerical examples in section 7, an overestimate of the upright

stress by 10 percent is accompanied by an overestimate of the allowable

stress by 7 percent, and thus by only a 3-percent overestimate of the

failing load of the entire beam. As e result, errors in the predicted

upright stresses appear to be overshadowed by the uncertainties existing

at present in the prediction of the allowable stresses; until these

uncertainties are reduced, corrections for the errors mentioned in the

preceding paragraph may be of small value. It is also pertinent to

observe that the measurements of upright stresses at high loads are not
reliable in some cases.

3.4. Comparison with anal_tical theories.- Any analytical theory of

incomplete diagonal tension is unavoidably complex, and attempts to

develop such a theory have been made only fairly recently. Koiter has

developed approximate solutions (reference lO) for a beam in which the

uprights are not connected to the web; they act thus purely as compression
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posts and do not influence the buckling of the web. Comparative calcu-

lations made by Koiter for several values of Au/dt give upright

stresses somewhat over 20 percent in excess of those given by the engi-

neering theory when r_/__= 8; for T_!_ = i00, the excess is of the order
Tcr Tcr

of 9 percent. The excess stresses may be explained qualitatively by the

fact that the web does not furnish any contribution to the effective area

of the upright if the upright is not connected to the web, as assumed by

Koiter; the discrepancy obviously decreases continuously as the ratio

T/TOt increases. In view of the simplifying assumption of disconnected

uprights made in the theory, the agreement may be considered as satis-

factory. The effective shear modulus calculated by Koiter is somewhat

lower than that calculated by the engineering theory, as would be

expected. For the limiting case of infinitely stiff uprights, the dif-

ferences are 9 and 5 percent for T/Tcr equal to 8 and i00, respectively.

For uprights of practical sizes (Au/dt of 0.67 and 0.18), the differences

are at most 3 percent.

A physically more realistic theory was developed by Denke (refer-

ence ll), who assumed s buckle pattern consistent with the fact that the

uprights are connected to the web. Calculations made by Denke (refer-

ence 12) for a series of 28 NACA test beams show in almost all cases

somewhat lower upright stresses than predicted by the engineering theory.

This implies rather close average agreement with the test results because

the engineering theory is conservative on the average (having been adjusted

to avoid unconservative predictions in any one beam). The predictions by

Denke's theory were slightly unconservative in some cases; significantly

unconservative predictions (about 30 percent) were made for two beams

with very low stiffening ratios Au/dt , a fact that may be of importance

in the application of the theory to thick-web beams.

Koiter's theory was intended to apply primarily at large loading

ratios but was considered by him to be reasonably applicable at loading

ratios down to unity. Denke's theory was set up from the beginning to

cover the entire range of loading ratios from unity to infinity. Such

a t%ide scope of the theories could be obtained only by rather severe

simplifying assumptions. A different line of attack was chosen by

Levy (references 13 and 14), who used 8 more exact theory at the expense

of being restricted to low loading ratios. A comparison of upright loads

calculated by Levy's theory and calculated by the engineering theory is

shown in figure I0. Upright loads rather than stresses are shown to

permit including the limiting case of infinite upright area. The loads

shown are based on the maximum stress, which occurs in the middle of the

upright. The maximum stress will be discussed in the next section; its

use in figure i0 does not affect the comparison and permitted direct use

of Lew's data without conversion. For the case "__qU= 0.25; _ = 0.4
'\dth /
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the two theories agree closely. For the other two cases, the engineering

theory gives somewhat unconservative (low) stresses as compared with

Levy's theory. Test results, on the other hand, have indicated so far

that the engineering theory tends to give somewhat conservative values

for the upright stresses, but the number of reliable tests is small for

low values of the ratio T/Tcr (about 2), where the percentage dif-

ferences are largest. It is an open question, therefore, which theory
is closer to the truth.

3.5. Amplification of theory of upright stresses.- Under the con-

dition of pure diagonal tension (and constant shear load along the length

of the beam), the upright stress qU is constant along the length of the

upright. However, it had long been noted in tests that this stress

actually has a maximum value _Umax at the middle of the upright and

decreases towards the ends, a fact referred to as "gusset effect" (refer-

ence 7). The stress aU given by the engineering theory is the average

taken along the length of the upright. (This is the manner in which the

experimental data used to established expression (27) for k were

evaluated.)

Section 3.9 discusses the observation that most upright failures in

practical beams can be ascribed to a local-crippling type of failure. It

seems reasonable to assume that the maximum stress OTJmax is a better

index for such a type of failure than the average value cU. This assump-

tion is supported by the observation that all attempts to base an empirical

formula for the allowable value (causing failure) of the upright stress

showed much larger scatter when aU was used as index than when _Jmax

was used.

The variability of CU, or the ratio _UmaxlqU, is largest Just after

buckling of the web and decreases as the diagonal tension develops. The

accuracy and the scope of the available experimental data are not adequate

to establish the ratio gUmax/_U empirically. On the other hand, the

stress conditions Just beyond buckling are reasonably amenable to a theory

of the type developed by Levy (references 13 and 14). The calculations

in these two references cover two configurations (_ = 0.4 and 1.0).given
%--

For lack of better information, the ratio OUmax/a U is assumed to vary

linearly with the ratio d/h; with this assumption, the two calculated

sets of values fix the relation. The calculations cover the range of

T/Tcr up to about 6 or 8 and thus provide only a narrow range of varia-

tion of the factor k; under these conditions, it is not considered
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Justified to make a more elaborate assumption than that of linear varia-

tion of eUmax/aU with k.

The resulting graph (section 4) thus rests on a limited set of data

and should be considered as tentative. Such experimental evidence as

exists from beam tests tends to indicate that the ratio obtained from

the graph is probably somewhat less reliable than the basic stress

theory itself.

3.6. Calculation of web buckling stress.- Theoretical formulas for

the critical shear stress Tcr are available for plates with all edges

simply supported, all edges clamped, or one pair of edges simply sup-

ported and the other pair clamped. With an accuracy sufficient for all

practical purposes, a formula covering all these cases can be written

in the form

• cr,elastic= kssE/t)2_h + l(Rd - Rh)(d/_
(32)

where kss is the theoretical buckling coefficient for a plate with

simply supported edges having a width d and a length h (where

h > d). The coefficients R h and R d are coefficients of edge restraint,

taken as R = I for simply supported edges and R = 1.62 for clamped

edges; the subscripts denote the edge to which the coefficient applies.

Formula (32) represents all available theoretical results (references 3

and I_ to 17) with a msximum error believed to be less than 4 percent; a

more precise evaluation of this error is not possible at present because

some of the published solutions for plates with mixed edge conditions

are known to be somewhat in error because of an erroneous choice of buckle

pattern (reference 18), but the correct values have not yet been computed.

In actual beam webs, the edge supports are furnished by the flanges

and the uprights; the panel edges are thus neither simply supported nor

clamped, and the actual edge conditions may or may not lie between these

two conditions. Some available theories consider the effect of bending

stiffness of the uprights, but they still give results differing over

lO0 percent from test results over a considerable portion of the prac-

tical range of proportions. (The most important reason for the weakness

of the theory is probably the one discussed in section 3.9.) For the

time being, calculations of Tcr for diagonal-tension analysis are

therefore based on formuls (32), supplemented by empirical restraint

coefficients which are functions of the ratio tuft (section 4). It

is probable, however, that theoretical coefficients based on an adequate
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theory should eventually replace the empirical coefficients, particularly

for beams designed to fail at low ratios of T/Tcr (say less than 4).

When the uprights are much thinner than the web, the coefficient Rh

becomes very low. In such a case, the critical stress calculated by

formula (32) may be less than that calculated with complete disregard of

the presence of the uprights. The latter value should then be used,
because low values of the empirical restraint coefficients (less than

about 0.5) are not covered by tests and thus are unreliable, and because

formula (32) obviously gives meaningless results when Rh approaches

zero.

Formula (32) is valid only as long as the calculated critical stress

is below the limit of proportionality for the material used. Beyond this

limit, corrections based on the theory of plastic buckling must be applied;

the theories presented in references 19 and 20 have been used to compute

the correction curves given in section 4 for bare end clad webs,

respectively.

3.7. Failure of the web.- As is well-known, the engineering beam

theory is not entirely capable of predicting the failure of beams, even

of simple cross sections; it must be supplemented by empirically deter-

mined moduli of rupture. In an analogous manner, the engineering theory

of incomplete diagonal tension must be supplemented by empirical failure

moduli. This section deals with the failure of webs. Since a modulus

of rupture is a fictitious stress, the method of computing the stress

must also be specified and constitutes an integral part of the definition

of the modulus.

The stress in a web may be expressed either as a nominal shear stress

or as a nominal diagonal-tension stress; the first alternative is used

here. The peak nominal stress in a sheet panel may then be defined by the

formula

(33a)

In this expression, C1 is a correction factor to allow for the fact

that the angle _ of the diagonal tension differs from 45°; by for-

mule (ii), for k = 1

i

Cl = sin 2_ i
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The factor C 2 is the stress-concentration factor arising from flexi-

bility of the flanges and introduced in equation (17). (Both factors

are given graphically in section 4.) The effect of factor C2 is

assumed to vary linearly with k in expression (33a) for lack of better

data. The effect of factor C 1 is assumed to vary with the square of k

on the basis of test results on curved diagonal-tension webs, in which

the angle m varies over a wider range than in plane webs. In the plane

webs under consideration here, the angle is usually near 40° , and the

factor C 1 is unimportant.

In curved webs, the determination of the angle _ (and thus the

determination of C1) is somewhat tedious. Consequently, a slightly

different procedure for calculating the web strength is used that may

also be applied to plane webs, with results differing at most by 2 to

3 percent from those obtained by the first procedure. (This error is
less than the scatter found in tests of nominally identical webs.) In

the second procedure, the peak web stress is written as nominal shear

stress in the form

-rmax = T (1 + kC2)
(33b)

that is to say, the angle factor C1 is omitted. On the other hand,

the allowable stress is now no longer considered as a property of the

material alone but is considered to be a function of the angle _PDT'

the angle that the folds would assume if the web were in a state of pure

diagonal tension.

In order to determine the allowable stresses, a series of 97 tests

was made on long webs of 24S-T3 and Alclad 79S-T6 aluminum alloy (refer-

ence 21). The external loads were applied as equal and opposite axial

forces to the flanges; the loading was thus essentially a pure shear

loading. The diagonal-tension factor k st failure was varied chiefly

by using different h/t ratios of the webs. The rivet factor

1 Diameter_ was varied from about 0.6 to about 0.9; 0.6 is about the- Pitch /

lowest value likely to be encountered in practice, 0.9 marks roughly the

region where rivet failure or sheet bearing failure becomes critical.

The uprights were heavy but were not connected to the web except for the

lowest values of k and were not connected to the flanges in order to

eliminate "Vierendeel frame" action. In most tests, bolts were used

instead of rivets, with the nuts drawn up "Just snug" because friction

between the sheet and the flange is a very important, but highly variable_

factor. The sheet was protected from direct contact with the bolt heads

by heavy washers. Some tests were made with the nuts tight, and older
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tests with riveted panels were used to estimate the increase in strength

obtained by friction effects.

Almost all tests fell within a scatter band of ±i0 percent from the

average for a given value of k. The scatter may be attributed to dif-

ferences in friction, material properties_ and workmanship, the first

factor probably being the largest one. About 85 percent of the tests

fell within ±5 percent of the average and, st low values of k, more

than 90 percent fell within the ±5-percent band. The curves of "basic

allowable" stress given in section 4 (denoted by T*al I and shown in

fig. 19) represent the line l0 percent below the average of the scatter

band; they are furthermore corrected as noted to specified material

properties (defined by the ultimate tensile strengths) which lie well

below the typical values.

Because of the large sizes of the flanges and uprights used in the

tests, the angle factor C1 was zero (m = mPDT = 45o) and the stress-

concentration factor C2 was also zero. The tests thus established the

basic allowable values of T'max, or of Tma x for _PDT = 45 ° (shown

as the top curves in figs. 19(a) and 19(b) of section 4). Detailed test

results are given in Pert II.

The curves for values of mPDT other than 45 ° were calculated as

follows: By formula (ll), the tensile stresses vary inversely with

sin 2mPDT; the values of T*al I for k = 1.O were therefore calculated

by multiplying the experimental value obtained for 45 ° by sin 2m. In

webs working in true shear, the allowable stress is evidently not

influenced by the sizes of the flanges and the uprights; therefore, all

curves of T*al I must have ss common end point at k = 0 the experi-

mental value of allowable true shear stress. For any given value of

C?DT, the two end points of the curve were thus established. The con-

necting curve was drawn on the assumption that the difference between

the curve in question and the experimental curve for 4_ ° varied linearly

with the factor k.

The curves for angles well below 45 ° are needed mostly for curved

webs rather than plane webs, and such experimental confirmation as

exists for low angles was obtained on curved webs.

The name "basic" was given to those curves because they serve as s

basis for a system of computation. They determine directly the allowabl _

stresses for the attachment conditions that existed in the main tests

(bolts with heads protected by washers, nuts Just snug). For other con-

ditions (rivets, web sandwiched between flange angles, etc.), the basic

allowable values are modified as specified in section 4 on the basis of

auxiliary tests.

R•
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It should be noted that all shear stresses are based on the gross

section, not on the net section between rivet holes. This simple pro-

cedure is possible because the tests disclosed an interesting fact:

When the ratio of rivet pitch to diameter was varied (for a fixed value

of the diagonal-tension factor k), it was found that not the failing

stress on the net section, but the failing stress on the gross section

was a constant w--_thin the scatter limits mentioned previously. This some-

what surprising result indicates that the stress-concentration factor

varies with the rivet factor in such a manner as to Just offset the

change in net section. Qualitatively, the change in stress-concentration

factor agrees with that found in straight tension tests: As the net sec-

tion decreases (for constant gross section), the stress distribution

becomes more uniform, and the ultimate stress based on the net section

approaches the ultimate found in standard tensile specimens without holes.

The quantitative result that the change in stress concentration Just
offsets the change in net area should, of course, be rmgarded as a pecu-

liarity of the specific materials tested.

In the relatively thin sheets used in these tests, the diagonal-

tension folds are quite deep, and sharp local buckles form in the vicinity

of the bolt heads. If the bolt heads bear directly on the sheet, these

local buckles csuse additional stresses around the bolts that lower the

allowable shear stress. In a number of comparative tests (reference 22

and other data), the decrease was found to be about lO percent. Rivet

heads are larger than the corresponding bolt heads and thus presumably

give about the same conditions as bolt heads protected by washers. The

difference cannot be shown directly by tests because rivets have the

additional feature of setting up friction, which can be fairly well

eliminated when bolts are used by leaving the nuts loose. Use of the

"basic allowable" curves when the attachment is by means of rivets

would therefore imply the assumption that the rivets have lost their

clamping pressure in service but that there are no additional local
stresses under the rivet heads even if no washers are used. Tests on

riveted panels and beams (using no washers) showed generally strengths

at least l0 percent higher than those developed with Just-snug bolts

with washers.

Because the buckles in thicker sheet are less severe, one might

believe that the thicker sheet would have higher failing stresses; how-

ever, a few beam tests on sheet up to 0.2 inch thick do not support this

belief. All these tests, however, did fall in the center of the scatter

band or higher, so that somewhat higher allowables might be permissible

in thicker sheets.

When single uprights are used, the simplest construction results if

the web is riveted to the outside of the flange angle, because the

uprights then require no Joggling. Preliminary results indicate that

such sn unsymmetrical arrangement of the web results in lower web failing
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stresses if the web is thick. With webs having _ = 60 and offset by
t

2.4 times their thickness from the center line of the flanges, the web

failing stress was reduced by about lO percent. On webs with _ = 120
t

and more, no detrimental effect was noted.

Adjacent to an upright which introduces a heavy load into a web,

the web stress is not uniformly distributed over the depth of the web.

If the entire shear load is introduced at one station (as in a tip-

loaded cantilever, for instance), the efficiency of the web may be as

low as 60 percent, and efficiencies higher than 80 percent are very

difficult to achieve. The factor of stress concentration (reciprocal

of the web efficiency) cannot be estimated with any degree of accuracy

at present; even the location of the point of maximum stress (top or

bottom flange) cannot always be predicted, because it depends on the

degree to which the diagonal tension is developed. Under these cir-

cumstances, the only safe procedure is to reinforce the web by a doubler
plate in the first bay.

If the load introduced at the tip does not constitute the entire

shear load applied to the beam, or if the point of load application is

not the tip (for example, fuselage reaction in wing spar continuous

through fuselage), the conditions are less severe, but some allowance

for stress concentration must be made. Also, contrary to elementary

theory, a heavy local load will produce some shear stresses in the web

outboard of the station of load application. The integral of the shear

stresses taken over the depth of the beam is, Qf course, zero in order

to fulfill the requirements of statics.

3.8. Upright failure by column action.- As discussed in section 2.4,

the web acts as s restraining medium that modifies the effective column

length. Because tests have indicated that the theoretical formulas for

the restraint action are too optimistic, an empirical formula for pure

diagonal tension has been introduced (formula (20)), and section 4 gives

s modification of this formula appropriste for imcomplete diagonal
tension.

Column failure by true elastic instability is possible only in

(symmetrical) double uprights. A single upright is an eccentrically

loaded compression member. A theory for single ncprights is difficult

to formulate because the eccentricity of the los_ is a function of the

deformations of the upright and of the web, which are very complex; the

failing stress of the upright is thus a function of the web properties

as well as of the upright properties. It is evidently advisable that

the stress _U in a single upright (formula (21_) be limited to the

column yield stress for the upright material.
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In four tests of beams with very slender single uprights, a two-

half-wave type of failure has been observed. The wave form was clearly

visible at low loads and, at two-thirds of the ultimate load, the

deformstlons were indisputably excessive on three beams. As a tentative

method of avoiding this situation, it is suggested that the average

stress over the cross section of the upright be limited to the allowable

column stress for a slenderness ratio huI20. This rule is conservative

(in general) as far as ultimate strength is concerned, but the sacrifice

appears to be necessary in order to achieve ressonably small deformations

at limit load.

3.9. Upright failure by forced crippling.- Almost all failures on

uprights (double or single) of open section may be explained as being

caused by forced crippling. The deformation picture may be described

as follows: Let the angle section shown in figure ll represent a por-

tion of the upright. The shear buckle forming in the web forces the

free edge A-A of the attached leg to take on a wave form. The amplitude

of this wave is a maximum at the free edge and zero along the heel B-B

of the angle. If the deformations are large, then a similar wave appears

along the free edge C-C of the outstanding leg, but the amplitude is very

much smaller, because this edge is under tension, the upright being under

eccentric bending. If the stiffener were of Z-section, the line C-C

would also remain straight, and only an extremely small wave amplitude

would be noticed along the free edge of the free leg.

(The deformation picture Just described probably indicates the main

reason why the existing theories of the buckling of stiffened webs often

give very poor results. They assume that the stiffener bends with the
sheet without deformation of the cross section. This assumption might

yield an acceptable result if the stiffener were welded to the web along

the heel llne B-B. Actually, it is riveted to the web along a line

between the free edge A-A and the heel llne B-B. Thus, the bending

stiffness that comes into play is more nearly that of the attached leg

alone, rather than that of the entire stiffener.)

The physical action of a strip along the edge A-A of the upright is

analogous to that of a beam-column. The strip is under the compressive

stress oU created by the diagonal tension, and under a lateral pressure

exerted by the web buckle. The problem is thus not one of elastic insta-

bility, as is true of the problems normally called local crippling.

Large deformations can and do occur while the compressive stress in the

upright is negligible.

No theoretical attention has been given to the problem of forced

crippling, although the possibility that forced crippling acts as a

"trigger mechanism" for failure had been suggested by several experi-

menters. It must be admitted that a theoretical analysis would be very
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difficult because _ large-deflection theory of plates would be required

(at least if the _aalysls is carried to the ultimate load, as it should

in order to be practically useful). An empirical formula has therefore

been developed that fits single or double uprights with a change in coef-

ficient (section 2). A rather large collection of data was available to

establish this fo._nula because almost all upright failures encountered

could be ascribed to forced crippling. The cross sections included

angles and Z-sections, both with and without llps, and J-sections.

The probability of failure by forced crippling evidently depends on

the "relative sturdiness" of upright and web; a sturdy upright will not

be deformed severely by a thin web. The empirical formula developed

assumes that the relative sturdiness can be measured by the ratio of

thickness of upright to thickness of web. Such a single-parameter

description of the complex phenomenon of forced local crippling can

obviously be no more than a first approximation and therefore cannot

give very high accuracy. The test results show a scatter band of

_20 percent. The constants recommended for design are based on the lower

edge of the scatter band.

No information is available on forced crippling of closed-sectlon

uprights; it is doubtful whether closed uprights with flat sides offer

material advantages over open sections.

Upright sections are not infrequently chosen by the criterion that

the moment of inertia should be a maximum for a given area. This one-

sided emphasis is quite misleading; a greater moment of inertia for a

given area means a thinner section, which has less local bending stiff-

ness and is thus more susceptible to forced crippling. In order to

demonstrate this fact, two beams (about 70 in. deep) were built, having

the same web thickness, upright spacing, and upright area, but differing

in moment of inertia of the (single) uprights. The moment of inertia

was doubled on the second beam, but this beam carried only 79 percent

of the load carried by the first beam; the first beam failed by web

rupture, the second, by forced crippling of the uprights. (See Part II.)

3.i0. Interaction between column and forced-crippling failure.- It

should be realized that column failure and forced-crippllng failure are

not, in reality, two completely independent types of failure; forced
deformation of the cross sections will affect the column behavior of the

upright. A certain amount of interaction effect is included automatically
in the formulas for the allowable stresses because they are empirical.

It is possible, however, that for very different proportions, or for

different loading conditions than those that existed in the tests, some

direct allowance for interaction may be necessary. For instance, the

uprights were, in all but a very few tests, subjected only to the com-

pressive loads arising out of the dlagonal-tension action of the webs;

they were not subjected to externally applied compressive loads. In
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cases where the compressive stress due to externally applied loads is of

the same order of magnitude as that caused by the diagonal-tension

action, the problem of interaction between forced crippling and column

buckling may become serious. It might be mentioned that a forced-

crippling problem also exists when externally applied compression is the

only force acting, that is to say, the skin buckles of a stiffened com-

pression panel generally reduce the failing stress of the attached

stiffener below that of the free stiffener.

3.11. Web attachments.- The web-to-flange rivets or bolts carry a

load per inch run R" equal to S/h for a shear-reslstant beam (k = O)

and 1.414S/h for a beam in pure diagonal tension (k = l, see formula (10a)).

Linear interpolation between these two values gives for incomplete diagonal

tension

s (i + 0.41 k)
R" =

(34)

The depth hR used in formula (34) is the distance between the rivet

lines in the top and bottom flanges if the rivet lines are single, or

the distance between the centrolds of rivet patterns in the most general

case of multiple rivet lines. There is s wide-spread custom of using

the effective depth he instead of hR, a practice that has been found

to give definitely unconservative results on some test beams; in many

cases, of course, the unconservatism is sufficiently small to be covered

by the hidden factors of safety usually existing in rivet design.

Literal interpretation of the basic concept of incomplete diagonal

tension would require that the rivet load be considered as made up of

two components: a force (i - k)S/h acting horizontally, caused by

the shear component of the load, and a force kS/h cos _ (according to

formula (I0)) acting at the angle _. The two forces should be added

vectorially. The resulting formula for R" is more complicated than

formula (34) and gives somewhat lower values (except, of course, at

k = 0 and k = I). This formula might be considered more rational than

formula (34), but this purported greater rationality is spurious because

the factor k expresses average stress conditions in the panel, and the

conditions along the riveted edge are not average. Experimentally, the

"more rational" formula has been found to be somewhat unconservative

(see Part II) and is therefore not given here.

The upright-to-flange rivets simply carry the upright load into the

flange and require no special comments.

The upright-to-web rivets must be investigated for several conditions

that Justify some comments.



6L NACA TN 2661 35

i

In double uprights, the rivets must have sufficient shear strength

to permit the upright to develop its potential column strength. In

civil-engineering practice, where built-up columns are frequent, various

rules are used to determine the required shear strength, and they lead

to widely different results. Tests were therefore made on several series

of double-angle columns (reference 23); the fo_-nula derived from these

tests (given in section 4.14) is essentially based on one of the methods

used in civil engineering, in which the shear strength is computed as

though the member were loaded not as a column, but as a beam (by a

distributed transverse load).

A riveted-up section evidently cannot achieve the same strength as

an (otherwise identical) monolithic section. For the purpose of obtaining

the formula just mentioned, the required shear strength has been defined

arbitrarily as the shear strength that will permit the riveted-up section

to develop 98 percent of the strength of the monolithic section. To be

entirely consistent, then, the usual column allowable stress should be

reduced by 2 percent; however, this small reduction may be omitted because

the formula for effective column length is somewhat conservative. If the

rivet strength provided in an actual case is much less than that given

by the formula, the allowable column stress must be reduced. This situa-

tion should not arise in new designs, but it did arise in a number of

the test beams designed before the formula was developed. A reduction

factor derived from the tests is given in section 4.

With single uprights, the shear buckles in the web tend to lift the

sheet off the upright; with double uprights, the web buckles tend to

split the two upright sections apart. These actions produce tensile

forces in the rivets, and sn empirical criterion for tensile strength

is therefore given in section 4. It should be noted that tensile failure

of a rivet is equivalent to tensile failure of the rivet shank only when

the head is relatively high. With low rivet heads, the tensile failure

is caused by shearing the head off axially; with flush rivets, tensile

failure may be caused by the rivet pulling through the sheet. Because

flush rivets have a low tensile strength, the problem usually demands

most attention on the outside skin; it is therefore discussed somewhat

more fully in the section 9.9, which deals with the attachment of curved

webs.

The criterion for the required tensile strength of rivets is based

on rather scanty direct evidence (Part II). However, out of 135 beams

tested by manufacturers, the great majority satisfied the criterion

(which is one reason why the 8vailable direct evidence is scanty). One

large company is using a shear criterion which gives practically the
same results as the tensile criterion does for rivets where shank failure

determines the tensile strength. It is believed, therefore, that the

criterion is not unduly severe, although it may be conservative.
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3.12. Remarks on reliabilit 7 of strength formulas.- In sections 3.7

to 3.11, the various types of failures have been discussed in a general

fashion. In section h, specific formulas recommended for use in design

are presented. The formulas are derived fro_ test plots forming scatter

bands and are consistently based on the lower edges of the scatter bands;

they are thus intended to give a very high degree of assurance that any

given beam under consideration will carry the design load. Because the

scatter bands are fairly wide, this high degree of assurance of safety

is necessarily obtained at the expense of considerable conservatism for

most beams.

The following remarks are based on the analysis of 64 beams tested

by the NACA, 135 beams tested by five manufact_arers, and about 140 NACA

tests made to establish the strength of webs under nearly pure shear

loading. The remarks are rather general; a m_re detailed discussion is

given in Part II.

The degree to which the formulas fulfill the intended purpose of

safe design may be characterized by the following statement: It is

estimated that predictions unconservative by _ore than 2 percent should

occur in less than 9 percent of all cases, and predictions unconserva-

tive by more than 5 percent should occur only with negligible frequency.

Excluded are local regions where large loads are introduced and beams

with very flexible flanges (axi > 2.5).

The scatter exhibited in web-rupture test_ may be ascribed to the
variations of three factors:

(i) Material properties

(2) Local stress conditions around rivet_ or bolts

(3) Friction between sheet and flange

In the NACA tests on webs under pure shear lomding, the material prop-

erties were fairly uniform, and individual corrections were made. The

webs were attached by bolts, with the nuts car_-fully adjusted to be

Just snug; the friction between the sheet and the flange was therefore

small. Nevertheless, the width of the scatter band was about ±lO percent,

which must be attributed mostly to variations _n item (2). In beam tests,

then, the failing strengths of webs may be expected to average l0 percent

higher than the recommended 811owable values adjusted to actual material

properties, and occasional values 20 percent higher than the allowables

may be found. An additional increase above the allowable may be realized

from the portal-frame effect (see _pendix .

It may be remarked that the procedure of correcting for actual

material properties is not very accurate. This correction is commonly

!
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based on the tensile strength developed by a coupon of standard shape.

Such a single tensile coupon neither evaluates possible anisotropy, nor

does it evaluate compressive properties; these factors should be evaluated

because shear is equivalent to tension and compression at ±45 ° to the axis.

Furthermore, the standard tensile test does not evaluate the static notch

sensitivity of the material. Fragmentary test evidence indicates that

an increase in tensile strength brought about by a deviation from the

specified heat treatment may be more than overbalanced by an increase of

the static notch sensitivity. The standard tensile test therefore does

not appear to be a very reliable index for correcting the strength of a

web that fails at rivet holes, although its use is probably preferable to
making no correction.

Plots of upright stresses causing failure by forced crippling show

a width of scatter band of ±20 percent. Thus, the average of a suffi-

ciently large number of tests of different designs may be expected to

be 1 = 1.25 times higher than the recommended allowable values, and0.8

occasional uprights may develop 1.5 times the allowable value. For

uprights failing by column action, the data available are insufficient

to establish a width of scatter band. Taken at face value, however,

they appear to indicate about the same width of band as for failure by

forced crippling. The width of the scatter bands for upright failure

is probably caused largely by inadequacy of the empirical formulas, and

only to a very minor extent by variation of material properties. Con-

sequently, higher allowable stresses would seem acceptable if they are
verified for any given case by a specific test.

It should be remarked that upright failure st a load 1.5 times the

design load is, of course, possible only if the web also develops

1.5 times the design load. In a well-designed beam, such a contingency

should not arise because the scatter band for web strength is much

narrower. Many of the test beams under discussion here, however, were
deliberately built with overstrength webs in order to obtain data on
upright failure.

A discussion of the accuracy of strength predictions would be incom-

plete without some mention of pitfalls in test technique.

If ordinary hydraulic jacks are used to apply the load, and the load

is measured by measuring the oil pressure, calibration tests must be made

to check for friction in the jack. (Values up to 40 percent have been
measured.)

If the beam tested is a cantilever, the slope of the beam axis at

the tip may be quite large in the last stages of the test. The force

spplied to the Jack is then inclined, and the horizontal thrust com-

ponent may greatly increase the friction in the Jack. This component
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also falsifies the bending moment in the beam and should be eliminated by

using rollers. Rollers should also be used when the beam is tested as a

"simple beam" on two supports; a beam bolted to two supports cannot be

considered as a "simple beam" when the deflections are large.

When individual beams are being tested, it is almost always neces-

sary to provide supports against lateral failure. Care is necessary to

reduce the friction against these supports. Thlck-web beams roll over

with considerable force and thus produce considerable friction against

fixed side supports. Wooden guides are objectionable because there is

danger that the beam flange may dig into the supports and hsng up.

3.13. Yieldln6.- According to the official design rules, the stress

in a structural member should not exceed the yield stress when the
structure is subjected to the design yield load. For members subjected

to axial stress, such as spar caps, the application of the rule is clear

and simple. The stress can be calculated or measured, if necessary;

stress pesks due to bolt holes or similar discontinuities are so localized

that they are neglected by common tacit consent. The allowable yield

stress either constitutes a part of the official materials specifications,

or it may be measured by a well-deflned and readily applicable procedure.

For shear webs, however, the situation is much less clear. Except in

the rare case of a truly shear-resistant web, the stress system is com-

plicated, and the allowable yield stress is not covered by the specifi-
cations. The suggested procedure which follows is an attempt to

formulate a simple procedure consistent in its main features with that

used for axially stressed members.

The nominal web stress given by formula (S3a) is used to define the

stress existing in the web. (Formula (33b) could be used Just as well;

the reason for using (33a) in this discussion is given subsequently.)

In the basic case of a pure-diagonal-tenslon web having factors C1

and C 2 equal to unity, the nominal web shear stress is equal to one-

half of the tensile stress (formula (ll), with _ = _9°). Consequently,

the allowable yield value of the nominal web shear stress is one-half of

the specification tensile yield stress of the web material. For a web

working in pure shear, the procedure for establishing an allowable yield

value is somewhat arbitrary, because the standard materials specifications

do not specify a shear yield stress. However, typical values of shear

yield stress are often supplied by the materials manufacturer, k_ile
these values are not obtained on sheet material and are thus open to

some question, they are probably acceptable for the purpose on hand.

The typical shear yield stress may be converted into an allowable value

by multiplication with the ratio of specification tensile yield to typical

tensile yield stress. With the allowable values of the nominal web shear

stress established in this manner for k = 1.O (pure diagonal tension)
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and k = 0 (pure shear), their magnitudes for intermediate values of
can be estimated by using the curves for the allowable ultimates as
guides; this procedure is evidently approximate but should be suffi-
ciently accurate. A curve established in this manner is given in sec-
tion 4 for 24S-T3 material.

k

A brief investigation shows that the criterion for yielding of the
web overrides the ultimate strength criterion for 24S-T3 alloy only
under a special combination of factors (ultimate allowable based on
tight rivets, ratio of design yield to design ultimate load 0.74 according
to Navy Specifications). For 75S-T6 alloy, the curve of allowable yield
stress lies above the "basic allowable" ultimate stress and therefore
cannot override the ultimate strength criterion.

The procedure outlined here agrees fairly well with the average of
a number of experimental yield loads determined by several methods in
manufacturer's tests, but there is a large scatter for the thinner webs
(t < 0.06 in.). Most of the scatter can be explained by the fact that
the methods used depend on judgment rather than on measurement. A method
of this nature may give reasonably consistent results if applied by one
skilled individual, or by a small group of individuals working in close
cooperation within one organization. The samemethod used by a different
organization, however, maygive widely differing results. (Most of the
thick-web data analyzed were obtained within one organization and were
reasonably consistent.)

The reason for defining the web stress by formula (33a) rather than
by formula (33b) is that only one curve is needed to define the allowable
stress. The use of formula (33b) would requ_e that a family of curves
of allowable yield stress be constructed, i_ the samemanner as the
curves of allowable ultimate stress (see section 3.7).

In practice, "detectable permanent set" has not infrequently been used
in place of the yield criterion. This practi.ce would correspond to using
the proportional limit, rather than the yiel_ stress, if sensitive means

of detection are employed and consequently seems inconsistent with the

design practice for such members as spar caps. Individual companies may
use such conservative rules as a matter of design policy. Conservative

yield allowables imply some weight penalty b_t decrease the possibility

of unanticipated yielding due to local stress concentrations not taken

into account in the stress analysis. In velq[ thin webs, for instance,

yielding may occur because of compression in the unsupported region

under a joggled upright if the joggle is long; stress concentrations

also occur in the web corners at uprights through which large local loads

are introduced into the web.

The general criterion that "there shall be no permanent set" is

empty until it is supplemented by a specificetion as to what quantity
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shall be measured in order to determine whether a permanent change has

taken place. In order to make the result independent of the measuring

instrument used, the description "detectable set" should be replaced by

a quautitative definition. In order to arrive at a decision as to what

quantity should be measured, and how much permsnent change should be

permitted, it will be necessa_j to consider why permanent set is not

desired. The answer to this question may be given by serodynamic or

functional rather than purely structural considerations. These con-

siderations indicate that a host of problems arises as soon as an

attempt is made to refine the methods for designing against permanent

set.
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4. Formulas and Graphs for Strength Analysis of Flat-Web Beams

No attempt should be made to use the following formulas unt_]
section 3 has been carefully read.

:ii

4.1. Effective area of upright

(a) Double (symmetrical) uprights:

(no sheet included in AU)

(b) Single uprights:

(no sheet included in AU)

AUe =

AUe = A u

AU

e distance from median plane of web to centroid of cross section

radius of gyration of cross section (pertsinlng to moment of

inertia about centroldal axis parallel to web)

An estimate of the ratio AUe/A U may be made with the aid of figure 7.

(c) Indefinite-width uprights: When the outstanding leg of sn

upright is very wide (for example, when a bulkhead between spars is

flanged over and riveted to the spar webs), consider AUe as consisting

of the attached leg plus an area 12tu2 (i.e., effective width of out-

standing leg is 12tu).

(d) Uprights with legs of unequal thickness:

the leg attached to the web to determine the ratio

formula (36) or (37), section 4.10 or 4.11).

Use the thickness of

tuft (required for
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4.2. Critical shear stress

In the elastic range, the critical shear stress is given by for-

mula (32), which takes the alternative forms

Vcr,elastic = kssE h + _(Rd - Rh
(dc < he)

Tcr,elastic kssE(h_)2 7 R" #hc\3_
dc > hc)

kss from figure 12(a)

(If dc > hc, read abscissa of fig. 12(a) as

dc,h c "clear" dimensions (see fig. 12(a))

Rd,Rh

 /hc. )

restraint coefficients from figure 12(b). (Subscript h

refers to edges along uprights; subscript d to edges

along flanges.)

With Tcr,elastic known, find Tcr from Eigure 12(c).

Note l: When attached legs of double uprights are crowned so as

to touch web only along rivet line, use d instead of dc-

Note 2: If Tcr calculated by the first _ormula is less than

T calculated with the presence of uprights disregarded, use the
cr

latter value.
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4.3. Nominal web shear stress

The nominal web shear stress is calculated by the formula

SW

where

Sw web shear force (external shear minus vertical component of

flange forces)

For unusual proportions, use formula (3). When calculating I

QW for use with this formula, multiply web thickness by (estimated)

diagonal-tension factor k.

and

4.4. Diagonal-tension factor

The diagonal-tension factor k

td = O.
Rh

is obtained from figure 13, with

When -Y--< 2, use formula (27a).
Tcr

4.9. Stresses in uprights

The ratio aU/T

are reasonably heavy.

section 3.2.

can be found from figure 14 if the beam flanges

If not, use procedure described near end of

The stress _U is the average taken along the length of the upright.

(For a double upright, _U is uniform over the cross section; for a

single upright, dU is the stress in the median plane of the web along

the upright-to-web rivet line.)

The maximum value of _U occurs at midheight; the ratio _Umax/_U

is given by figure 15.
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4.6. An_le of diagonal tension

The angle m of the diagonal tension is found with the aid of fig-

ure 16(a), if it is desired, by using the ratio eU/T obtained previously

(section 4.5). The recommended procedure for finding the allowable web

stress requires use of the angle _PDT, which is found by equation (15);

a graphical solution based on this equation is given in figure 16(b).

_.7. Maximum web stress

The maximum (nominal) web stress is calculated by either expres-

sion (33a) or (33b); these expressions are, respectively,

T'max = T(1 + kRc1)(1 + kC2)

and

T_X = T(I + kC2)

The factor C1 is taken from figure 17, the angle _ obtained from fig-

ure 16(a) being used. The factor C2 is taken from figure 18.
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4.8. Allowable web stresses

Vmsx

(For failure in web-to-flange attachment line.)

Figure 19 gives "basic allowable" values (denoted by T'all) for

that are used as follows for different types of connections:

(a) Bolts Just snug, heavy washers under bolt heads, or web plate

sandwiched between flange angles: Use basic allowables.

(b) Bolts just snug, bolt heads bearing directly on sheet: Reduce

basic allowables l0 percent.

(c) Rivets assumed to be tight: Increase basic allowables i0 percent.

(d) Rivets assumed to be loosened in service: Use basic allowables.

If the nominal web shear stress is expressed as Tma x (section 4.7),

the allowable value is taken from the curve with the appropriate value

of mPDT" If the nominal web shear stress is expressed as T'max (sec-

tion 4.7), the allowable value is taken from the top curve labeled

_PDT = 45°"

Rivets are assumed to be not of any countersunk type.

Note i: The allowable web stresses defined by figure 19 are valid

only if the standard allowable bearing stresses (on sheet or rivets) are

not exceeded.

Note 2: For webs unsymmetrically arranged with respect to flanges

h (See
and with _ < lO0, the allowable web stress should be reduced.

section 3.7.)

Note 3: At points where local loads are introduced into the web,

the allowable web stress should be reduced. (See section 3.7, last

two paragraphs.)
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4.9. Effective column length of uprights

The effective column length

empirical formula

Le of an upright is given by the

Le = hu (d < 1.5h)

Le = hU (d > l. Sh)

(35)

whe re

hu length of upright, measured between centroids of upright-to-flange

rivet patterns

4.10. Allowable stresses for double uprights

(Webs and uprights made of the same aluminum alloy; open-section

uprights riveted to web.)

(a) To avoid forced-crippling failure, the maximum upright stress

OUmax should not exceed the allowable value ao defined by the

empirical formulas

_o = 21k2/3 (tuft)i/3 ksi (24S-T3 alloy) (36a)

e6ke/3 (tuft)1/3 ksi (75S-T6 alloy) (36b)

Nomographs for these formulas are given in figure 20. If _o exceeds the

proportional limit, multiply it by a plasticity correction factor 1], which

can be taken as

Esec

E

with the moduli determined from the compression stress-strain curve of the

upright material.

(b) To avoid column failure, the stress gU should not exceed the

column allowable taken from the standard column curve for solid sections

with the slenderness ratio Le/P ss argument. (The curve for solid sec-

tions is considered adequate because the forced-crippling criterion con-

siders local failure.)
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4.11. Allowable stresses for single uprights

(Webs and uprights made of the same aluminum alloy; open-section

uprights riveted to web.)

(a) To avoid forced-crippling failure_ the maximum upright stress

_Umax should not exceed the allowable value oo defined by the empirical

formulas

GO = 26k2/3 (tuft) 1/3 ksi
(24S-T3 alloy) (37a)

eo = 32"5k213 (tuft)i/3 ksi
(75S-T6 alloy) (37b)

Nomographs for these formulas are given in figure 20. If oo exceeds

the proportional limit, apply the plasticity reduction factor as for

double uprights.

(b) To avoid column failure or excessive deformation, the stress

should not exceed the column yield stress, and the average stress over

the cross section of the upright

_U

_Ua V =

_UAUe

AU

(38)

should not exceed the allowable stress for a column with the slenderness

ratio hu/20.
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4.12. Web-to-flange rivets

The rivet load per inch run of beam is given by formula (34) as

whe re

hR

R" : ---_(i + 0.414k)

hR

depth of beam measured between centroids of rivet patterns, top

and bottom flanges

4.13. Upright-to-flange rivets

The end rivets must carry the load existing in the upright into the

flange. If the gusset effect (decrease of upright load towards the end

of the upright) is neglected, these loads are

for double uprights

PU = quAu

for single uprights

PU = qUAUe

(39)
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_.14. Upright-to-web rivets

For double uprights, the upright-to-web rivets should be checked for

two possibilities of failure, one due to shear caused by column bending,

one due to tension in the rivets caused by the tendency of the web folds

to force the two components of the upright apart.

To avoid shear failure, the total rivet shear strength (single shear

strength of all rivets) for an upright of 2_S-T3 alloy should be

IOOQhu kips (40)
RR = b_

whe re

Q static moment of cross section of one upright about an axis

in the median plane of the web, inches3

width of outstanding leg of upright, inches

ratio from formula (35), section 4.9

For uprights of other materials, it is suggested that the right-

hand side of formula (40) be multiplied by the factor: Compressive yield

stress of material divided by compressive yield stress of 24S-T3 alloy.

If the actual rivet strength R is less than the required strength

the allowable stress for column failure (section 4.10, item (b)) must be

multiplied by the reduction factor given in figure 21.

The strength necessary to avoid tension failures is given by the

tentative criterion:

Tensile strength of rivets per inch run > O.lStqul t (4l)

where quit is the tensile strength and t, the thickness of the web.

For single uprights, the tensile strength necessary to keep the

folds of the web from lifting off the upright is given by the tentative

criterion:

Tensile strength of rivets per inch run> 0.22t_ul t (_2)
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The tensile strength of a rivet is defined as the tensile load that

causes any failure; if the sheet is thin, failure will consist in the

pulling of the rivet through the sheet. (See section 9.9 for data.)

No criterion for shear strength of the rivets on single uprights

has been established; the criterion for tensile strength is probably

adequate to insure a satisfactory design.

The pitch of the rivets on single uprights should be small enough

to prevent inter-rivet buckling of the web (or the upright, if thinner

than the web) at a compressive stress equal to aUmax. The pitch should

also be less than d/4 in order to Justify the assumption on edge sup-

port used in the determination of Tcr. The two criteria for pitch are

probably always fulfilled if the strength criteria are fulfilled and

normal riveting practices are used.

4.15. Effective shear modulus

The effective (secant) shear modulus GIDT of webs in incomplete

diagonal tension is given by figure 22(a) for the elastic range. Fig-

ure 22(b) gives the plasticity correction factor Ge/GID T for webs of

2hS-T3 alloy.

4.16. Secondar[ stresses in flanges

The compressive stress in a flange caused by the diagonal tension

may be taken as

_W co_
_=

_F

The primary msximum bending moment in the flange (over an upright) is

theoretically

tan

M_a x = kC 3
12h

where C 3 is taken from figure 18. The secondary maximum moment, half-

way between uprights, is half as large. Because these moments are highly

localized, the block compressive strength is probably acceptable as the
allowable value. The calculated moments are believed to be conservative

and are often completely neglected in prsctice.



NACATN 2661 51

5. Structural Efficiency of PT_mne-Web Systems

In many problems of aircraft structur_-I design, the over-all dimen-

sion of the component to be designed is ft_md by aerodynamic or other

considerations, and the load that it must carry is also known. These

given requirements imply inherent limitat£_ons on the structural effi-

ciency that may be achieved. Consider, for example, two compression

members required to carry a load of l0 kivs_; the first one is specified

to be 1 inch long, the second one l0 feet Long. Obviously, the first

one will be merely a compression block, which can be loaded to a very

high stress and is thus very efficient. T_me second one will be a fairly

slender column, which can carry only a low stress and is thus unavoid-

ably rather inefficient.

As an aid in choosing the most effici_t designs possible, Wagner

suggested (reference 24) that the given paz-mmeters - load and dimension -

be combined into a structural index having the dimensions of a stress

(or any convenient power or function of a =_t_ress). For columns, the

index would be P/L 2, and for shear webs, it would be S/h 2, but for

convenience in plotting certain curves, the square root of these expres-

sions is usually preferred; the structural _ndex for shear webs is thus

_/h, where S is conventionally expressed in pounds and h in inches

in order to obtain a convenient range of nunnbers. A web that is required

to be very deep, but to carry only a small _oad may be termed "lightly

loaded"; it has a low index value which con_notes unavoidably low effi-

ciency. A shallow web carrying a large loa_ is "highly loaded"; it has

a high structural index and can be designed to be more efficient than

the lightly loaded web. A web 70 inches deep and carrying a load of

lO,O00 pounds (side of a flying-boat hull) would have an index value

of 1.4; a web l0 inches deep and carrying a load of 100,O00 pounds (web

of a monospar fighter wing) would have an imdex value of 31.8. These

two examples indicate roughly the range of _he index value for conven-

tional designs.

In order to obtain a general idea of t/me structural efficiency of

plane webs in incomplete diagonal tension, _"_stematic computations have

been made for the following conditions:

(i) The material is either 24S-T3 for _eb and uprights, or

Alclad 75S-T6 for the web and 75S-T6 for the uprights.

(2) The upright spacing is fixed at either one-fourth of the web

depth or equal to the web depth.

(3) The cross section of the upright is an angle having legs of

equal thickness but unequal width. The leg ettached to the web is

assumed to have a width-thickness ratio of 6_ the outstanding leg a

ratio of 12. Single as well ss double uprights are investigated.
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The allowable values used for web shear stresses are those shown in
figure 19. The allowable upright stresses for forced crippling are
taken from figure 20. The curve of allowable column stress is defined
for 24S-T3 material by the Euler curve and a straight line tangent to
it, starting at 52.5 ksi at zero length. For 75S-T6 uprights, the
Euler formula is used with the tangent modulus substituted for Young's
modulus.

With the design conditions thus fixed, web systems have been
designed by a trial-and-error method to give simultaneous failure of
the web and the uprights; the result maybe termed '_alanced designs."
It has not been proved that a balanced design is necessarily the optimum
(lightest) design, but spot checks on a number of designs have failed
to disclose any cases where the efficiency could be improved by
unbalance.

The results of the calculations are shownin figure 23. The upper
diagrams show the structural efficiency, expressed as a nominal shear
stress

that is to say, as the shear stress that would exist in the fictitious
web obtained by adding the upright material in a_uniformly distributed
manner to the actual web. The upper limit for T is the allowable
shear stress for webs with k = O; at this limit, no stiffeners are
required, the flanges alone being sufficient to make the web buckling
stress equal to the stress at which the web fails in the connection to
the flange.

The lower diagrams in figure 23 show the "stiffening ratio" Au/dt.
These diagrams are useful for finding a trial size of upright after the
necessary web thickness has been estimated, as discussed in section 6.
For double uprights on Alclad 75S-T6 webs, interpolation between the

d
d 1.0 and _ = 0.25 is not permissible for index valuescurves for _ =

above about lO; a more complete set of curves is therefore given in
figure 23(c).

For a given web material and index value, the stiffening ratio

depends to some extent on the upright spacing (d/h) and on the type of

upright (double or single). However, the efficiency of the web system

as measured by T is practically independent of upright spacing and

upright type for 24S-T3 webs. For 758-T6 webs designed for an index
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value greater than about 14, double uprights closely spaced (_ = 0.2_
appear to give appreciably better efficiency than the other three
arrangements, but the following practical considerations should be
borne in mind.

At low values of diagonal tension (say k < 0.05), the calcula-
tions are very sensitive to changes in the web-buckllng stress, the web
allowable stress, and the shape of the upright (ratio b/tu). Figure 24
shows the approximate relation between the index value, the thickness
ratio h/t, and the factor k, based on the calculations for figure 23.
Inspection of figure 24 shows that, for the web system under considera-

tlon 5S-T6, double uprights, _ = 0.25 , the value of k = 0.05 is
already reached at an index value of about 15. For higher index values,
the efficiency that can be counted upon in any given practical case is
therefore somewhatdoubtful; it maybe only very little more than the
efficiency of systems with single uprights and wider upright spacing,
which are muchmore desirable for production.

Inspection of figure 24 shows that the thickness ratio of the web
(h/t) depends only on the index value, in first approximation. Because
the ratio h/t is more readily visualized than the index value,
approximate (average) values of h/t are shown in figure 23 in addi-
tion to the index values. Inspection of this figure shows that thick
and medlum-thick webs occupy the largest part of the figure, while the
thin webs are crowded together on the left side. Wagner recommended
(reference l) that webs be designed as diagonal-tension webs for index
values less than 7 (and as shear-resistant webs for index values greater
than ll). Websthat fall under Wagner's classification of diagonal-
tension webs therefore occupy only a narrow strip on the left-hand
edges of figure 23.

Each curve in figure 23 has two branches. On the right-hand branch,

the uprights fall by forced crippling; on the left-hand branch, they

fail by column bowing. (The sudden change in direction of the curves

at their right-hand ends is caused by the "cut-off rule" regarding the

critical shear stress given in note 2 of section 4.2.) Inspection of

the figure shows that column failure becomes decisive only when the

index value is quite low, about 4 or less, and the h/t ratio is cor-

respondingly large (over i000). In present-day practice, such thin

webs are encountered only infrequently; upright failure by forced

crippling therefore predominates in practice.

As long as failure by forced crippling remains decisive, the

efficiencies shown in figure 23 can be improved somewhat by choosing

more compact upright sections (lower b/tu) than those chosen for the
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calculations. The practical limitation will be the edge distance

required for upright-to-web and upright-to-flange rivets.

Figure 25 shows a comparison of the most efficient web systems for

the two materials considered. The curves represent faired envelopes

for the range of upright spacing studied.

An often-debated question is the relative efficiency of sheet webs

and truss webs. Figure 26 gives a comparison of 24S-T3 alloy sheet webs,

Pratt truss webs_ and Warren truss webs, based on a revision of the study

made in reference 25. The truss-web members were assumed to be square

b
tubes with a ratio _ = 24 of the walls in order to eliminate local

instability problems. The same allowable stresses (including the

column curve) were used as for the sheet webs. Compression members were

assumed to be pin-Jointed for design purposes. For a number of trusses,

sufficiently detailed designs were made to permit an estimate to be

made of the weight added by the gussets and by the end-connection inef-

ficiency of the web members. The tension members of the trusses were

designed to be capable of carrying sufficient compression to enable the

truss to carry a negative load equal to 40 percent of the positive load.

(The sheet webs will carry 100-percent negative loads.)

Figure 26 shows that the Pratt truss is decidedly less efficient

than a sheet web except over a very narrow range, but the Warren truss

is somewhat more efficient than the sheet web over a considerable range

of the index value. The following considerations, however, may influ-

ence the choice between the two types of shear webs:

(a) The method of designing sheet webs has been proved by about

200 tests covering a large range of proportions. There does not appear

to be a single published strength test of a truss of the type con-

sidered. It is quite possible that the secondary stresses existing in

trusses with riveted Joints may reduce the actual efficiency below the

theoretical value.

(b) In general, the designer is required to design a beam rather

than a shear web alone. The allowable flange compressive stresses for

a sheet-web beam are quite high (often above the yield stress), while

the long unsupported chords of the Warren truss would have rather low

allowable stresses. The efficiency of the tension chords is also lower

in the truss because the web shears are introduced in concentrated

form and thus necessitate large rivet holes through the flanges. Inef-

ficiency of the flange might therefore counterbalance efficiency of the

web.

(c) If the web to he designed is for the spar of a conventional

wing with ribs, additional members must be added to the Warren truss
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for attaching the ribs. On a sheet web, the uprights can be used for
this purpose with little, if any, additional material being required.
In addition, considerations of rib weight may require changes of the
slopes of the truss diagonals, and the efficiency of the truss is fairly
sensitive to such changes.

(d) The truss has generally poorer fatigue characteristics than
the sheet web and is more expensive to manufacture.

(e) The truss gives access to the interior of the structure; this
fact alone is often sufficient to overbalance all other considerations.

6. Design Procedure

For design, the following procedure is suggested:

With the given parameters S and h, the index _/h is calculated.

With the help of the efficiency curves in figure 23, a value of
d/h is chosen (other design considerations affecting the spacing being
considered, if necessary), and the choice between single or double
stiffeners is made.

The appropriate lower diagram in figure 23 is used to find the
stiffening ratio Au/dt.

Figure 24 is used to find h/t and thus the web thickness t.
(This figure was prepared from the computation data for figure 23.)
Normally, the use of standard gages is required; the next-higher stand-
ard gage should be chosen, in general. If the ratio h/t cannot be
estimated with sufficient accuracy from figure 24, use the figure to
obtain an approximate value of k. Next, assume _PDT = 40o and use

figure 19 to find an approximate value for Tal I . (Correct this, if

necessary, for proper edge condition as specified in section 4.8). The

required web thickness is then

S
t=

he Tal i

The area AU can now be calculated, the values of d, t, and

Au/dt being known, and an upright having this area is chosen. Again,

the next-hlgher standard area should be chosen unless the web thickness

chosen is appreciably higher than the required thickness (i.e., nearly

one gage-step higher).
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As long as forced crippling is the decisive modeof failure of
the upright, the formulas indicate no reason for choosing anything more
complicated than an angle section for the upright. However, because
the empirical formulas for forced crippling are not very accurate, it
is quite possible that detailed experiments on a specific design may
show someother cross sections to be somewhatbetter.

Attention is called to the fact that the allowable web stresses
given by figure 19 are based on "minimumguaranteed" material proper-
ties which are considerably below the typical properties. The use of
higher properties in design is permitted by the regulating agencies
under someconditions; the allowable web stresses may then be increased
in proportion.

The allowable stresses for uprights given in section 4 are also
conservative; the degree of conservatism is discussed briefly in sec-
tion 3.12 and in more detail in Part II (reference 2). The uncertainty
is probably caused almost entirely by the weaknessof the empirical
formulas; variability of material properties is believed to be a very
minor factor. Consequently, higher allowable stresses can be used for
the uprights if the design is verified by a specific static test.

A final word of caution regarding figure 23 may not be amiss.
The curves shownare strictly valid only when the stipulated allowable
stresses are applicable and when the uprights have the stipulated
cross section. Under other conditions, the curves will be somewhat
different, and the differences may not be small; consequently, the
charts should not be used as a meansof strength analysis.

7. Numerical Examples

As numerical examples, a thln-web beamand a thick-web beamwill
be analyzed. Both beamswere tested in the NACAresearch program; the
failing loads measured in the tests will be used as "design ultimate
loads" P.

Example i. Thin-web beam.- The thin-web beam chosen as example 1
is beam 1-40-4Da of Part II (reference 2) or reference 4. The uprights
consist of two angles 0.750 × 0.625 x 0.125. The material of web and
uprights is 2hS-T3 aluminum alloy. The web is sandwiched between the
flange angles. The flange-flexibility coefficient aki (formula (19a))
is 1.20.
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Basic data: (All linear dimensions are in inches.)

h = 41.4 hU = 38.6e

d = 20.0 dc = 19.37

h = 37.1
c

t = 0.0390

P = 30.3 kips

t U = 0.125

I"". 2

sectionJAU = 0.353 in.
Upright Lo 0.351

From these data:

AU - 0.454 het = 1.61 In. 2 --tu= 3.20
dt t

Buckling stress:

With -- = 3.2O
t

and -_- large, figure 12(b) gives

Rh = R d = 1.62

h C

From figure 12(a), with -- : 1.91
dc

kss = 5.92

By formula (32)

(00390 2
Tcr, elastlc : 5.92 x 10.6 × 103 x _19.37 J x 1.62 = 0.416 ksi

Figure 12(c) shows that _r, elastic= Tcr for this stress; therefore,

T = 0.416 ksi
cr

Web stress:

Loadln_ ratio:

P 30.3
- 1._ = 18.8 ksihet

.._T_T 18.8 = 45.2
TC r =
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Diasonal-tension factor:

From figure 13

k = O.680
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Upright stress:

From figure 14

_U
-+- = 0.90; eU = 0.90(18.8) = 16.9 ksi

Allowable upright stress for column failure:

The effective column length is, by formula (35),

L e =

38.6

VI.O + 0.6802(3 - 2 x 0.519)

= 28.0

Le 28.0 79.8
o o.351

This is in the long-column range. Therefore qall = = 16.5 ksi.

This value would be the allowable stress for a solid-section column.

The upright consists of two angles riveted together. By formula (40),

the required rivet strength was computed as:

RR = 8.56 kips

The actual rivet strength was

R = 4.65 kips

R 4.65
With the ratio R-R = _-_ = 0.545, figure 21 gives a reduction fac-

tor 0.94. The allowable upright stress is therefore

Sai I = 16.5 x 0.94 = 15.9 ksi

Since the beam failed when the computed upright stress was 16.9 ksi

(see heading "Upright Stress"), the allowable stress of 15.5 ksi was

about 8 percent conservative.
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Allowable upright stress for forced cripplins:

With d = 0.519 and k = 0.680, figure 15 gives aUmax = 1.14

_u _u

_Umax 1.14 × 16.9 = 19.2 ksi

From figure 20

_0 = 24.0 ksi

The allowable stress is 25 percent greater than the existing stress.

Allowable web stress:

According to figure 16(a), with
CU

- 0.90 and k = 0.680,
T

tan a = 0.81

According to figure 17,

C I = 0.022

According to figure 18, with _d = 1.20,

C2 = 0.01

Therefore

Tt

max
= T(I + k2Cl)(l + kC2) = 18.8 × 1.01 x I.O1 = 19.2 ksi

The allowable web stress according to figure 19(a) is 22.0 ksi which

is 15 percent greater than the existing stress.

Note: The index value of the beam is _= _ = 4.20.

Interpolation on figure 23(a) shows that a beam with this index value

would be a balanced design if it had a ratio Au/dt equal to 0.46

and that the uprights would fail by forked crippling.

The actual ratio Au/dt is 0.454 and is thus very close to the

value given by figure 23(a). However, the calculations for this figure

are based on upright sections having b/t U ratios of 6 and 12 for the

attached and the outstanding legs, respectively. The actual sections
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have ratios of 5 and 6, respectively; they are thus stockier than those
assumedfor figure 23(a). As a result, the detailed analysis shows
that the uprights have excess margin against failure by forced crippling
but are somewhatweak in column action. The detailed analysis thus shows
that the design is slightly unbalanced and that beamfailure should be
caused by column failure of the uprights; this prediction agrees with
the test result.

Example 2. Thlck-web beam.- The thlck-web beam chosen as exam-

ple 2 is beam V-12-10S af Part II. The uprights are single angles

0.625 x 0.625 × 0.1283. The material is 24S-T3 aluminum alloy. The

web is bolted (using washers) to the outside of the flange angles.

As in example i, the test failing load will be used as "design

ultimate load." Two sets of allowable stresses will be given for

forced-crippling failure of the uprights and for web failure. The

first set represents the values recommended for design use, obtained

from the graphs or formulas quoted. The second set, given in paren-

theses following the first set, represents the 'best possible estimate."

The differences are as follows:

(a) The 'best possible estimate" for the crippling allowable is

based on the middle of the scatter band, while the "recommended for

design" value represents the lower edge of the scatter band. The "best

i _ 1.25
possible estimate" for crippling allowable is therefore 0.--_

times the value given by formula (37).

(b) The "best possible estimate" for the web strength is obtained

by multiplying the design allowable (fig. 19) by the fsctor: Actusl

tensile strength over specification strength (or 69.3/62) and by the

factor 1.10 to obtain the average rather than the lower edge of the

scatter band for the tests on shear webs. (See section 3.7.)

Basic data:

h e = 11.58 in.

d : 7.00 (:dc) in.

Au 0.1443 In.2

_i = 1.37

h U = 9.875 in.

t = 0.1043 in.

: o.1283 in.

= 0.3125 in.

h c = 9.875 in.

= O. 182 in.

e = 0.251 in.

AF : 2.32 In. 2

P = 34.5 kips
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Effective upright area:

0.1443 = 0.0497
AU e 2

/0.251_

i +

Bucklin5 stress:

_- = 1.23 R h = 0.93

-%- = 3.00 Rd = 1.62

AU e
- 0.0681

dt

61

h c

-_ = 1.50 kss = 6.70

Tcr,elastic = 6.70 × 10.6 × 103 (0.1043')V/ "93 +21 (1.62 - 0.93)

: 16.95 ksi

According to figure 12(c):

Vcr = 16.10 ksi

Stress analysis:

T _-

34.5
11.58 × 0.1043

= 28.56 ks i

k = 0.123

T
-- : 1.77
T

Cr

(from fig. 13 or formula (27a))

oU
-- = 0.227 _U :: 6.h8 ksi
T

°Umax
= 1.30 = 8.34 ksi

GU OU_ax
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Col,,mn failure of upri6hts:

A _ × 5 angle with an effective length less than 9.9 inches is evi-

dently in no danger of column failure at a stress of 6.48 ksi.

Forced_cripplin 6 failure :

tu = 1.23
t

a o = 7.0 (8.75) ksi

Comparison of the two values of Oo with qUma x shows that the

"design allowable" value (7.0 ksi) would have predicted upright failure

at a load about 16 percent lower than the test failing load, while the

"best possible estimate" of 8.75 ksi would have predicted upright

failure at a load 4.5 percent higher than the test load. In the test,

the web ruptured, but these figures indicate that upright failure

might have contributed to the web failure or else would have been the

primary cause of failure if the web had been slightly stronger.

Web failure:

2AF - 3.84
het

From figure 16(b) : _PDT _ 29o

From figure 19(a): Tal I = 25 (30.75) ksi

The actual web stress at failure (web rupture) was computed to

be 28.56 ksi. (The correction for effect of flange flexibility is

negligible.) The "design allowable" value of 25 ksi therefore would

have predicted the failure too low (conservatively) by about 12 percent.

The "best possible estimate" of 30.75 ksi would have predicted the

failure about 8 percent too high. If the correction for actual material

properties had been made, but not the correction for scatter in shear-

web tests, the prediction would have been very close.

Note: According to the "best possible estimates," failure of the

uprights should have precipitated failure of the beam at a load less

than 4 percent lower than that causing web failure. In the test report,

failure was attributed to web failure. It appears, therefore, that the

design was very closely balanced.
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The index value for this beam is _ 16.0. According to
ll.5-_ =

figure 23(a), this index value would require a ratio Au/dt of

about 0.26, while the actual ratio was only 0.198. This high efficiency

of the test beam is attributable to the use of an upright section having

a b/t U ratio of 5, which is considerably more compact than the section
assumed for the calculations leading to figure 23(a).

CURVED-WEB SYSTEMS

The analysis of diagonal tension in curved-web systems utilizes

the methods developed for plane-web systems. The discussion is there-

fore kept brief except for new problems introduced by the curvature.

The circular cylinder under torque loading is the simplest case and is

used as the basis of discussion.

8. Theory of Pure Diagonal Tension

If a fuselage were built as a polygonal cylinder and subjected to

torque loads (fig. 27(a)), the theory of diagonal tension would evi-

dently be applicable and require only minor modifications. If the fuse-

lage were built with a circular-section skin, but polygonal rings

(fig. 27(b)), the sheet would begin to "flatten" after buckling and

would approach the shape of the polygonal cylinder more and more as

the load increases. In the limit, the theory of pure diagonal tension

would be applicable, but in the intermediate stages, the theory devel-

oped for plane webs evidently would not be directly applicable. In an

actual fuselage, the rings are circular, not polygonal (fig. 27(c));

.consequently, all the tension diagonals of one sheet bay cannot lie in

one plane, even when the diagonal tension is fully developed; an addi-

tional complication therefore exists.

In order to derive a theory of pure diagonal tension in circular

cylinders with a minimum of complications, it is necessary to consider

special cases. Wagner has given fundamental relations (reference 5)

for two cases: cylinders with panels long in the axial direction

1 R),(d > 2h, see fig. 27(d)) between closely spaced stiffeners (h <

and cylinders with panels long in the circumferential direction

(h > 2d, fig. 27(e)) between closely spaced rings d < _ R . In the

first case, the majority of the tension diagonals lie in the surface

planes of the "polygonalized" cylinder; in the second case, the

majority of the tension diagonals lie on a hyperboloid of revolution.
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In the development of the theory of pure diagonal tension for

plane webs, it was pointed out that all the stresses are known as soon

as the angle m of the folds is known. The fundamental formula for

finding this angle is formula (14), which may be transformed by dividing

numerator and denominator by Young's modulus into

E - Ex
tan2c_ _ (43)

E - E
Y

This formula can also be applied to the diagonal-tension field formed

by an originally curved panel on the basis of the following

considerations.

Imagine a panel long in the axial direction (fig. 27(d)) to be cut

along one long edge and both curved edges. If the panel were now

flattened out, the cut long edge would be separated from the stringer

by a distance A equal to the difference between the length of the arc

and the length of the chord, which is approximately

1

The restriction to closely spaced stiffeners, h < _ R, is made in

order to permit the use of this formula.) The same configuration would

have been obtained if the panel had been made flat originally and then

compressed by the amount A. The change from a circular section to a

polygonal section that takes place while the diagonal tension develops

is therefore equivalent to a compressive strain A/h in the rings, and

formula (43) may be used to compute the angle _ for a curved panel by

writing

1/h\ 2

The formula thus becomes

e _ - _sT (_4)
tan _ =

1 /hh 2
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For the panel long in the circumferential direction, the relations
are more involved, but the final result again takes a simple form
(reference 5)

- _ST
tan2c_= (45)

i/d 2
" (RG + glgl tan2(_

If the restrictions as to the ratio d/h are disregarded, and

both formulas are applied to a cylinder with square panels (d = h), it

will be seen that the "flattening-out" terms become equal and the

formulas give identical results if

tan2 = 1
3

or

= 30°

which is a fairly representative angle for curved webs. It may be

assumed, then, in view of the empirical factors contained in the theory

of incomplete diagonal tension, that for practical purposes formula (44)

d d

may be used if _ > 1.0 and formula (45), if _ < 1.0. The tests avail-

able so far tend to confirm the assumption that no limitations need be

placed on the aspect ratio d/h of the panels. Until further data

become available, however, it would be well to limit the subtended arc

of the panel to a right angle h = _ R unless the ring spacing is very

small; it should also be noted that the investigations of the panel long

in the circumferential direction made to date are very sketchy.

When the strains on the right-hand side of formula (44) are

expressed in terms of the applied shear stress by using the basic

formulas

vth cot _ vtd tan

- ; eRG = ARGaST AST

the formula becomes a transcendental equation for

in the form

(i + RR)tan4_ + A tanBm = i + R S

2_

sin 2cL

and may be written

(d > h) (4_a)
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where

2

A V ;

Similarly, formula (45) becomes

where

ht dt
R s ; RR =_

-

B tanS_ + (1 + RR)tan4_ = 1 + R S
(h > d) (45a)

Graphs based on these formulas are shown in figure 28.

The effective shear modulus of a cylinder in pure diagonal tension

is obtained by the basic formula (23a), modified only to suit the nota-

tion for curved-web systems

E _ dt tan2_ + ht cot2_ + 4 (46)

GpD T ARG AST sin22m

It will be noted that the formulas given contain the actual areas

of the stringers and rings. In practice, these stringers and rings are

probably always single; in the case of plane webs, single uprights enter

into all equations with an effective area given by formula (22), but the

following considerations indicate that the actual areas should be used,

in general, for the analysis of cylinders.

Consider a cylinder of closed circular cross section (fig. 27(c))

with closely spaced rings under the action of torques applied at the

two ends; the rings as well as the stringers are assumed to be riveted

to the skin. The rings in such a structure are evidently in simple

hoop compression that balances the circumferential component of the

diagonal tension; the eccentricity of the rings does not affect the

hoop compression, the load actually being applied to the ring in the

form of a uniformly distributed radial pressure. Consequently, the

actual area of the rings should be used in the calculations.

The stringers are loaded eccentrically by the skin, but they can-

not bow from end to end; they are constrained by the rings to remain in

a straight line, except for secondary bowing between the rings and local

disturbances in the vicinity of stations where the magnitude of the
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shear load changes. In the main, then, the stringers act as though

they are under central _xial loads, and their actual areas should

correspondingly be used.

When the rings are "floating" (fig. 29(a)), the radial pressure

exerted by the skin tension is transmitted to the rings in the form of

forces Pr concentrated at the stringers. The circular beam under

hoop compression and isolated radial forces shown in figure 29(a) are

statically equivalent to the straight beam shown in figure 29(b), a

continuous beam under uniform load. The maximum bending moment in the

ring (under the stringer) is therefore

i

_RG = _ Pr h

By statics, with sufficient accuracy if _ < i,R

h h

Pr = PRG R = Ttd tan _

the re fo re

2

h d (47)
_G = Tt _-_ tan

For the remainder of this section, the discussion is confined to

cylinders with panels long in the axial direction (d > h).

Because of the polygonal shape acquired by the cross section of the

cylinder as the diagonal tension develops, each tension diagonal experi-
ences a change in direction as it crosses a stringer. Consequently,

each tension diagonal exerts an inward (radial) pressure on the

stringer. The magnitude of this pressure per running inch of the

stringer is

Tth tan c_ (48)
p:-_-

If this pressure were distributed uniformly along the length of the

stringer, the primary peak bending moment in the stringer (at the

Junction with a ring) would be given by the formula

MST = Tt _--_ tan
(_9)
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A secondary peak moment would exist half-way between rings; its magni-

tude would be one-half of the primary peak.

For several reasons, the radial pressure p is not uniform. The

first and most important reason is as follows. The derivation of

formula (hS) for p assumes that every tension diagonal experiences

the same change in direction as it crosses the stringer; this is the

condition that would exist if the "rings" of the cylinder were built as

polygons. Since the rings are actually circular (or curved), a portion

of the tension diagonals near each end of a panel will be forced to

remain more or less in the original cylindrical surface and will thus

experience little change in direction. The radial pressure is therefore

less near the ends than given by the simple formula; as a result, the

primary peak bending moment may be much less, and the secondary peak

somewhat less than indicated by the formulas based on a uniform dis-

tribution of the pressure. Other reasons for nonuniform distribution

of the pressure are sagging of the stringers, possibly sagging of the

rings, and nonuniformity of skin stress.

The effects of nonuniform distribution of the radial pressure could

perhaps be estimated under the conditlon of pure diagonal tension con-

sidered here, but the calculations would be tedious and would probably

require additional approximations. Under the practical condition of

incomplete diagonal tension, additional large difficulties would arise.

In any event, elaboration of the procedures for computing bending

moments is not likely to be worthwhile in view of the empirical nature

of the theory of incomplete diagonal tension.

9. Engineering Theory of Incomplete Diagonal Tension

9.1. Calculation of web buckling stress.- Theoretical coefficients

for computing the buckling stress Tcr in the elastic range, based on

the assumption of simply supported edges (reference 26) are given in

figure 30. Over the limited range of available tests, these theoretical

formulas have given better results than any empirical formulas for

buckling of curved sheet, particularly when the appearance of stringer

(compressive) stresses was used as the criterion for sheet buckling.

It should be noted, however, that in the limiting case of flat sheet

it has been found necessary to modify the theoretical coefficients by

means of empirical restraint coefficients (section 4.2). Logically,

analogous modifications should also be made for slightly curved sheet

(small values of Z in fig. 30), but no recommendations can be made at

present concerning a suitable procedure.

9.2. Basic stress theory.- As pointed out in section 8, the

geometric change of shape from a circular to a polygonal cylinder

with d > h is equivalent to producing a compressive strain in the
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rings, and a similar consideration applies when h > d. The development

of the diagonal tension therefore proceeds more rapidly in a curved web

than in a plane web, and the empirical relation between the diagonal-

tension factor k and the loading ratio T/Tcr must be generalized.

Analysis of test data has shown (reference 27) that they can be fitted

fairly well by the generalized formula

k = tanh .5 + 300 _-_ loglo (50)

with the auxiliary rules:

(a) If h > d, replace d/h by h/d.

(b) If d/h (or h/d) is larger than 2, use 2.

Figure 13 shows equation (50) in graphical form.

With the same assumptions as in plane diagonal tension, the

stresses and strains in stringers and rings are given by the formulas

kT cot

_S m_ = - AST
-- +o.5(1- k)
ht

ST

= (51)

kT tan a qRG
=- ; _ =

qRG AR----G+ O. 5( 1 - k) RG --E-
dt

(52)

For floating rings, the factor 0.5(1 - k) representing effective skin

in formula (52) is omitted.

The web strain _ is obtained by formula (30d). A graph for

evaluating this strain in the usual range of design proportions is

given in figure 31. In curved diagonal-tension fields, the longitudinal

and the transverse stiffening ratio are in most cases of the same order

of magnitude. The stringer stress and the ring stress thus depend on

three parameters, the two stiffening ratios and the radius of curvature.

With this number of parameters, it is impracticable to prepare an

analysis chart for curved diagonal-tension fields corresponding to

figure 14; the analysis must therefore be made by solving the equations

in the manner described in section 3.3 for the general case of plane
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diagonal tension. A first estimate of _ is made; equations (51),

(52), and (30d) are solved; the resulting values of _, cST , and _RG

are substituted into formula (44) (or (45)) to obtain an improved value

of m, and so forth.

As a first approximation to the angle _, the value _PDT for pure

diagonal tension given by figure 28 may be used. A better first approxi-

mation to _ is obtained if the angle mPDT taken from figure 28 is

multiplied by the ratio _/_PDT given by figure 32. This curve repre-

sents the average of the scatter band obtained by plotting the ratios

m/_PDT for a number of webs with proportions varied within the usual

design range. In general, the value of _ obtained in this manner

will be within 2° to 3° of the final value found by successive approxi-

mation. Analysts with some experience generally dispense with the use

of figures 28 and 32 and simply assume an initial value of the angle _.

The stresses given by formulas (51) and (52) are average stresses

that correspond to the value eU given by formula (30a). The maximum

stresses are obtained, as for plane webs, by multiplication with the

ratio emax/a given by figure 15. It is possible that these ratios

may require modification for strongly curved panels. As mentioned in
the discussion of plane webs, direct experimental verification of the

ratio is extremely difficult because of the difficulty of separating

the compression stress from the stress due to bending and the stress

due to forced local deformation.

The effective shear modulus of curved webs in incomplete diagonal

tension is computed by formulas (31a) and (31b), with ARG substituted

for AUe and AST substituted for 2AF. In order to be consistent

with the assumption that the "polygonization" takes place immediately

after buckling in cylinders with d > h, the polygon section should be

used in the calculations. Thus, for a circular cylinder with equally

spaced stringers, the shear flow due to torque and the torsion constant

should be computed by the formulas

T

q = lI . I
2_R 2 _, 6 q)2)

j = 2_R3t(l _ 7 e2)
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where _ is the angle subtended by two stringers. The reduction fac-

tors in the brackets are approximate but are sufficiently accurate for

1
values of _ up to about _ radian (12 or more stringers, uniformly

spaced). It may be noted that the percentage correction for J is

roughly twice as large as for q.

9.3- Accuracy of basic stress theor7.- Because the development of

diagonal tension in curved webs depends on more parameters than in plane

webs, and because the test specimens are more expensive to construct and

test, it has not been feasible to check the behavior of curved webs

experimentally as thoroughly as for plane webs. An effort has been

made to check a sufficient number of extreme cases to insure reasonable

reliability over the usual range of designs, but very few checks have

been made to date with h > d. The reliability of the basic stress

theory appears to be about the same as for plane-web systems except for

the effective shear modulus, which is somewhat overestimated for curved

webs.

9.4. Secondary stresses.- The primary m_ximum bending moment in

a floating ring can be calculated by using expression (47), which is

valid for pure diagonal tension, and multiplying it by the diagonal-

tension factor k. The secondary maximum, which is equal to one-half

of the primary maximum and occurs half-way between stringers, has been

checked experimentally in one case and agreed very closely with the

computed value.

The maximum bending moment in a stringer can similarly be calcu-

lated by using expression (49) and multiplying it by the factor k.

However, as pointed out in the discussion of expression (49), this

formula cannot be regarded as reliable. There have been very few

attempts to check these moments by strain measurements. Such a check

is extremely difficult because the effective width of skin working with

the stringer is not known with sufficient accuracy, and consequently it

is difficult to separate bending from compressive stresses. Even more

difficult is the problem of allowing for the local bending stresses due

to forced deformation of the stringer cross sections. Taken at face

value, the few data available indicate that the secondary peak moment

(half-way between rings) may agree roughly with the calculated value

(one-half of the primary peak). The primary peak at the rings, however,

appears to be even less than the calculated secondary peak. The

analysis of available strength tests on cylinders has also led to the

conclusion that the maximum moment appears to be no larger than the

calculated secondary peak. It is suggested, therefore, that the bending

moment in the stringer at the ring as well as the moment at the half-way

station be computed by formula (49), with the factor k added and the

factor 12 replaced by 24.
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9.5. Failure of the web.- The nominal shear stress T at which

a curved web (or skin of a cylinder) ruptures would be given directly

by the curves of figure 19 if the diagonal tension were uniformly dis-

tributed. For plane webs, nonuniformity of stress distribution is

allowed for by the stress-concentration factor C2 (formula (33b))

which is calculated by Wagner's theory of flange-flexibility effects.

For curved-web systems, no corresponding theory has been developed;

the factor C 2 is thus necessarily taken to be zero. In order to

compensate for the error introduced by this assumption, the allowable

stress taken from figure 19 is multiplied by an empirical reduction

factor which depends on the properties of the stringers and rings.

From analogy with the plane-web case, it would seem that the reduction

factor should depend primarily on the bending stiffnesses of stringers

and rings. However, for the tests available to date, much better cor-

relation was achieved by using the stiffening ratios involving the

areas as parameters.

The allowable ultimate value for the shear stress T in a curved

web is thus given by the empirical expression (reference 27)

= T* (0.65 +Tall all (53)

where

The value T all

ARG AST (54)
A = 0.3 tanh_-_- + 0.i tanh hT

is given by figure 19; the quantity A may be read
.

from figure 33. It may be noted that T can exceed T because
all all'

the quantity _ can exceed the value 0.35 if the stringers and rings

are heavy. The explanation lies in the fact that a grid-system of

stringers and rings can absorb some shear; the effect is analogous to

the portal-frame effect in plane-web systems.

In section 4.8, it is stated that the basic allowable values of

shear stress for plane webs may be increased i0 percent if the web is

attached by rivets assumed to remain tight in service. All the curved

webs tested also developed this higher strength, but the number of

tests is small.

It should be noted that section 4 also states tha_ the rivets are

assumed to be not of any countersunk (flush) type becau:e no sppli-

cable tests are available; this statement holds for cured webs as well

as for plane webs.



NACATN 2661 73

9.6. General instability.- As a check against the danger of col-

lapse of the cylinder by general instability, the empirical criterion

developed by Dunn (reference 28) is available. This criterion gives

the shear stress Tinst at which instability failure will occur and

is shown graphically in figure 34. The full lines indicate the region

covered by the test points, which lie close to the lines with very few

exceptions. No explanation was found for the sudden shift from one

line to the other. The radii of gyration PST and _RG should be

computed on the assumptions that the full width of sheet acts with the

stringer or ring, respectively, and that the sheet is flat, because

the empirical criterion was obtained under these assumptions. Graphs

for evaluating radii of gyration for stringer-sheet combinations are

generally given in stress manuals and are therefore not given here.

9.7. Strength of stringers.- Geometrically, the stringers of a

cylinder correspond to the flanges of a plane-web beam, and the rings

correspond to the uprights of the beam. Functionally, however, the

stringers as well as the rings of a cylinder under torque load act

essentially like the uprights of a beam; the strength analysis of

stringers therefore involves the same considerations as the design of

uprights.

In the discussions on plane-web beams, it was shown that uprights

can fail either by forced crippling or by column action, and that

forced crippling dominates over most of the practical range of design

proportions. The problem of column failure was therefore treated

rather briefly, and the problem of interaction between column failure

and forced crippling was only mentioned.

In curved-web systems with many rather light stringers, the

problem is unfortunately not so simple. The investigations made to

date are hardly more than exploratory, but they indicate that column

action may be relatively more important than in plane webs for the

following reasons:

(a) The angle of diagonal tension is lower in curved webs than

in plane webs (20 ° to 30 ° against 40 °, roughly); the stringers there-

fore receive a relatively higher load than the uprights.

(b) The bracing action which a plane web exerts against column

buckling is absent in curved webs. In fact, the radial component of

the diagonal tension applies a transverse load to the stringer, which
acts therefore as a beam-column rather than as a column.

The importance of column action of the stringers arising from

these causes is increased greatly by the necessity of designing

cylinders such as fuselages to carry bending moments as well as torque

loads.
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In view of the great importance of column action in stringers,

it would be highly desirable to have rather complete and reliable

methods of predicting this type of failure. Most of the customarj

methods are adaptations of those developed for "free" columns not

attached to webs. These methods are highly unreliable because

(a) the twisting mode of failure is greatly altered by attachment

to a web, and

(b) the skin usually buckles well before ultimate failure takes

place. The forced local buckling of the stringer section induced by

the skin buckles materially reduces the resistance against column

buckling or twisting unless the stringer is unusually sturdy, that is

to say, unusually resistant to forced buckling.

The problems involved are very complex, and very little useful

information is available even for the much simpler problem of the

stiffened cylinder in compression. A purely empirical solution is

hardly feasible in view of the many parameters involved. Substantial

progress in the analysis methods for torsion cylinders can therefore

be expected only when an adequate theory of the compression cylinder

has been developed.

For the time being, the following checks are suggested in addi-

tion to the check against general instability discussed in section 9.6.

(1) The strength against forced crippling should be checked in

the same manner as for uprights on plane webs.

(2) A check should be made against column failure. For Euler

buckling normal to the skin, fixed-end conditions can probably be

assumed to exist at the rings. The column curve established in the

usual manner (using the local crippling stress for the stringer section

as allowable for _ = _ probably requires some reduction to allow for
0 /

the effect of skin buckles unless the ratio tsT/t is larger than 3-

Consideration should be given to the possibility of twisting failure

if the column curve is obtained by computation. Some allowance should

be made for beam-column effect.

(3) The maximum compressive stress in the stringer should be

computed as the sum of the stress _ST (computed in accordance with

section 10.4) and the stress caused by the bending moment MST

(section 10.5).

9.8. Strensth of rinss.- Floating rings should be designed to

carry the combined effect of the hoop compression ORG (section 10.4)
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and of the bending due to the moment MRG (section 10.6) at the
Juncture with the stiffener. A check at the station midway between
stiffeners (where the momentis only half as large, but of opposite
sign) maybe necessary if the cross section of the ring is such that
the allowable stresses in the outer and the inner fibers differ
greatly.

Rings riveted to the skin should be checked against forced
crippling in the samemanner as the stringers. No recommendations can
be madeat present concerning checks against instability failures
other than that given in section 9.6 for general instability. For the
tests available, the two checks (for forced crippling and general
instability) used in conjunction gave adequate strength predictions,
but the number of tests is very small because the rings were usually
overdesigned in order to force stringer or web failure.

Unless the stringers are madeintercostal (which leads to loss of
efffciency in bending strength of the cylinder and is therefore seldom
done) the rings must be notched to permit the stringers to pass through.
At the notch, the ring stress is increased because the cross section is
reduced; this effect is aggravated by the suddenness of the reduction,
that is to say, a stress-concentration effect exists. The free edge of
the notch should therefore be checked against local crippling failure.
In the tests of reference 29, all specimens (representing fuselage side
walls) failed in this manner. If the stringer is connected to the ring
by a clip-angle of sufficient length riveted to the web of the ring,
the net section at the notch is increased, and the edge of the notch
can readily be stiffened so much that there is no danger of this type

of failure. No specific recommendations on this problem can be made

at present because no adequate tests are available.

9.9- Web attachments.- For the edge of a panel riveted to a

stringer, the required rivet shear strength per inch run is taken as

R" = q + cos

This formula is obtained from formula (lO) with the assumption used to

obtain formula (34). For an edge riveted to a ring, cos _ is replaced

by sin _.

If the sheet is continuous across a stiffening member, but the

shear flow changes at the member, the rivets evidently need be designed

only to carry the difference (Rl" - R2" ) between the adjacent panels.

In such cases, neither the factor k nor the angle _ for the lower-

stressed panel is likely to be needed for other purposes. In order to

eliminate the necessity of calculating these values for the purpose of
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rivet design, simplified criteria may be used and should be adequate

for practical purposes.

Rivets should fulfill the criterion for tensile strength given by

expression (42). Curved surfaces are encountered mostly on the outer

surface of the airframe, where flush rivets are often required for aero-

dynamic reasons. Flush rivets usually develop a low tensile strength

because they pull through the sheet; the check for tensile strength is

therefore important.

Data for the tensile strength of protruding-head rivets taken from

reference 30 are given in figure 35. Data for some types of flush

rivets, taken from reference 31, are given in figure 36. These data

are for so-called NACA rivets, in which the countersunk head is formed

from the rivet shank in the driving operation and then milled off

flush. For "conventional" rivets with preformed countersunk heads, the

tensile strengths were found to be from lO to 20 percent lower for some

test series (reference 31). Additional data on flush rivets may be

found in references 31 and 32.

9.10. Repeated bucklin6.- It has been found experimentally that

a load in excess of the buckling load will cause a lowering of the

buckling stress for the next application of the load. Thus, in a

series of tests on curved panels (reference 33), the buckling stress

was lowered as much as 30 percent after l0 loads, and as much as 40 per-

cent after 60 load applications. The maximum applied shear stress was

of the order of 50 percent in excess of the buckling stress; in the

worst case, it was near the probable proportional limit, but in the

great majority of cases it was well below this limit. The reason for

the lowering of the buckling stress therefore presumably must be sought

in large but highly localized sheet bending stresses associated with

the buckle formation ("plastic hinges").

In static tests made in the aircraft industry, standard practice

appears to be to apply the test load in steps; after each step, the

load is removed in order to check for permanent set. Thus, any shear

web will have been buckled a number of times before the ultimate load

is reached. The calculations, on the other hand, use formulas for

buckling stresses that can be considered as valid only for the case
where the test load is increased continuously until failure occurs.

In the test, then, the diagonal tension will be more fully developed

than predicted, and consequently failure will take place at a lower

load than predicted.

The magnitude of the error in the predicted strength depends on

the degree to which the diagonal tension is developed at failure, that

is to say, on the magnitude of the diagonal-tension factor k, on the

type of failure, and on the history of the loadings.
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The prediction of sheet failure in curved-web systems is not
sensitive to moderate errors in k, although somewhat more sensitive

than for plane webs, as inspection of figure 19 indicates. The predic-

tion of stringer or ring failure by forced crippling is not sensitive

because an overestimate of k leading to an overestimate of the

stresses developed also leads to an overestimate of the allowable

stresses. (For balanced designs, a given small percentage error in k

results in about one-third as much error in the predicted load.) The

prediction of a column failure in a stringer, however, is presumably

much more sensitive because the allowable stress in this case is

presumably independent of k.

The angle of twist of a cylinder is extremely sensitive to small

errors in k, or T/Tcr , in the vicinity of the buckling torque. An

addition of 20 percent to the buckling torque may double or triple

the angle of twist. Since previous buckling or other factors can

easily cause a 20-percent error in the estimated buckling torque, it

is evident that the calculated angle of twist can be in error by

I00 to 200 percent in the region from, say, 0.8Tcr to l.STcr.

At the present, there are no methods available for estimating any

of the effects of repeated buckling quantitatively.
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i0. Formulas and Graphs for Strength Analysis

of Curved-Web Systems

No attempt should be made to use the following formulas until sec-

tions 8 and 9 have been carefully read.

i0. i. Critical shear stress

The critical shear stress Tcr is obtained with the aid of fig-

ure 30 and figure 12(c). Note that d is the distance between rings

riveted to the skin (not floating). Use judgment in reducing Tcr if

Z < i0 and tsT/t (or tRG/t) < 1.3.

10.2. Nominal shear stress

When d > h, the nominal shear stress T for post-buckling condi-

tions is calculated as though the sheet were unbuckled and flat between

stringers.

10.3. Diagonal-tension factor

The diagonal-tension factor k is obtained from figure 13, or by

formula (90). The spacing d is measured between rings riveted to the

skin.

When h > d, the nominal shear stress may be calculated (in

general) as though the sheet were unbuckled.
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10.4. Stresses2 strsins_ and angle of diagonal tension

By formulas (51), (52), (30d), (44), and (45), respectively,

79

kT cot m aST
= _ ; cST = --_-aST

AST+-- 0.9(1 - k)
ht

kT tan _ aRO

_RG = - ___ ; _RG =-_-

+ o.5(1 - k)
GL

(For floating rings, omit 0.5(1 - k) in the last expression; use actual

ring spacing for d.)

in 2m + sin 2e(l - k)(l + _)_

(Use fig. 31 to evaluate _.)

E - _ST
tan2_ = (d > h)

i fhV

E - EST
tan2_ = (h > d)

_- _RG + _(Rd--)2tan2c_

The equations are solved simultaneously by successive approximation.

i0.5. Bending moments in stringers

The suggested design value for the moment in a stringer at the rings

as well as hslfway between rings is

hd 2

MST = kTt _-_ tan
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10.6. Bending moment in floating rin_

The primary maximum moment in a floating ring (at the junction with

s stringer) is

MRG = kTt --h2d tan
12R

The secondary maximum half-way between stringers is half as large.

10.7. Strength of web

Obtain: mPDT from figure 28 (or by formula (44a) or (45a))

Then, by formula (53),

T*al I from figure 19

from figure 33

Tall = T all (0"69 + A)

The value Tal I may be increased I0 percent for rivets that remain tight

In service. It is not applicable without special verification if rivets

are of any flush type.

10.8. Strength check_ stringers and rings

Check for general instability (fig. 34).

Check stringers against column failure. See section 9.7 for

suggestions.

Check against forced crippling as follows: For stringers, compute

_STmax' with Omaxl a from figure 15. Allowable value is Go from

figure 20 (single uprights). For rings (not floating), check similarly

with ORGms x.

On notched rings, check edge of notch against buckling.

If rings are floating, assume _STmax equals _ST"

Design floating rings to carry combination of hoop compression (for-

mula (52) or section 10.4) and bending moment (section 10.6).
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10.9. Rivetln_

For edges of panel along stringer, the required rivet shear strength

per inch run is, by formula (55),

_+k 1 1)_R" = q _co_

For edge riveted to ring, replsce cos m by sin _.

Rivets should be checked for tensile strength (which includes rivet

pulling through the sheet as one possible mode of fsilure). The tentative

criterion for tensile strength is given by expression (42) as

Tensile strength of rivets per inch run > 0.22tSul t

For tensile strengths of rivets, see figures 35 and 36.
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Ii. CombinedLoading

The preceding sections have dealt with the problem of designing a
shell subjected to pure torque loading. They may also be used for
designing a shell subjected to transverse loads producing bending, pro-
vided the shell is so short that the axial stresses produced by bending
are small comparedwith the shear stresses. If the shell is not very
short, however, a number of problems of combined loading arise. As a
first step toward the solution of these problems, the cylinder subjected
to torsion and compression has been investigated in reference 34, and
the following method of analysis has been found to yield reasonable
accuracy.

The critical shear stress is calculated with the aid of figure 30.
This stress is now denoted by Tcr,O, where the additional subscript
zero indicates the condition of shear acting alone. Next, the critical
compressive stress is calculated and denoted by Ocr,O" Because the
classical theory of compression buckling of curved sheet is in poor
agreement with tests, the theoretical buckling coefficients should be
modified by an empirical factor (reference 35). In figure 37, the
values Tcr,O and _cr,O are plotted on a O-T diagram. These two
points are connected by an "interaction curve." Each point on the inter-
action curve characterizes a pair of critical stresses dcr and Tcr

that, acting in conjunction, will produce buckling of the sheet. This

curve has been drawn from the equation

_cr I Tcr _2 (56)_+ _ = 1

_cr,O \Tcr,0/

which describes the interaction with sufficient accuracy (reference 35).

Let G denote the compressive stress that would exist in the cylinder

if the sheet did not buckle (i.e., remained fully effective) under the

action of the design compressive load P. Similarly, let 7 denote the

shear stress that would exist if the sheet did not buckle under the action

of the design torque T. The values of G and T establish the point C

in the a-T diagram of figure 37. The line drawn from C to the origin

intersects the interaction curve at point D. The critical stresses dcr

and Tcr characterized by point D are used in the following steps. For

convenience of notation, there are also used the interaction factors

_c = _c___£_r ; RT = Tc---K-r (57)
Gcr,0 Tcr,0
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With the aid of the ratios

Tcr,O T
A = ; B = --

Ocr,O

which can be computed directly from the dimensions of the structure and

the specified design loads, the interaction factors can be written in the

form

RT = _ A__+_IA2"

213 _ 7
+ i ; Rc =ART

B

The total stringer stress is the sum of the stringer stress due to

the compressive load P and the stringer stress due to the diagonal

tension caused by the torque, or

sST =SCsT + _TsT (58)

The stress _CsT is computed by the formula

P

_ST = (59)
n(AST+ht C)

The load P must be taken as negative because it is compressive; n is

the number of stringers, AST is the area of one stringer, and hC is

the effective-width factor. This factor is taken as the K{rm_n-Sechler

expression for effective width (reference 36), multiplied by the ratio

RC in order to make allowance for the presence of the torque loading;

thus

nC = RC0.89_ _cr (60)

oCST

If expression (60) is substituted into equation (59), e quadratic equation

is obtained which yields

P 2D 2 + 2D_D 2 P (61)aCsT = hAsT nAsT

L
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(62)

The stress oTST is computed by formula (_i), modified by the

ratio RT in order to allow for the presence of the compressive load

the modified formula is

P;

kT cot m (63)

oTST = AST + 0.9(i - k)R T

ht

The interaction factors RC and RT, by definition, describe the

interaction between compression and torque at the instant of buckling.

Their use in formulas (60) and (63) to describe the interaction on the

effective width is fundamentally arbitrary. However, in the usual

design range, the effect of moderate errors in estimating the effective

width is unimportant; any reasonable method for estimating the effect

of interaction on effective width is therefore acceptable for the time

being.

The stress in a ring is computed, according to reference 34, by the

unmodified formula (52). This procedure is, in principle at least, open

to some question; it would seem that some interaction factor should be

added in the denominator, as was done in equation (63). In the tests

made to date, the rings were relatively large; for this reason, and

because the ring stresses are proportional to tan _ (instead of cot

as the stringer stresses), the experimental ring stresses were too low

to afford a sensitive check on this point.

The diagonal strain in the sheet is computed by equation (30d), on

the implied assumption that it is not modified significantly by the com-

pressive force carried by the sheet. The angle m is computed by

formula (_34) or (45), the strain cST being computed from the total

compressive stress saT given by expression (98). The diagonal-tension

factor k is obtained from figure 13 by using Tcr (not Tcr,O ).

The stress computation for the case of combined loading thus differs

from that for the case of pure torque loading in the following items:

(1) The critical stress is reduced by interaction
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(2) The stringer stress due to the load P must be added; this
calculation involves an interaction factor

(3) The calculation of the stringer stress due to the torque involves
an interaction factor

Concerning item (i), there is ample theoretical and experimental evi-
dence to Justify the belief that the calculation is sufficiently accurate
for design purposes. The factors used in items (2) and (3) are arbitrary,
but they have only a very minor effect except for low loading ratios.
Consequently, the accuracy with which the stresses can be computed under
combined loading might be expected to be about the sameas for pure torque
loading, as long as the ratio T/Tcr is greater than 2, and this expecta-
tion was fulfilled in the tests of reference 34.

The question of allowable stresses for failure is more problematical.
The allowable value of skin shear stress is probably not changed signifi-
cantly by added compression, but there is no experimental evidence on
this score. As far as true column failure of the stringers is concerned,
it would be immaterial whether the compressive stress in the stringer
arises directly from the axial load P, or indirectly (through diagonal-
tension action) from the torque; in other words, column failure would be
assumedto take place when the total stringer stress given by expres-
sion (58) reaches the column allowable v_lue. The condition of true
column failure would only exist, however, if the cross section of the
stringer were completely immune to forced deformations induced by skin

buckles. As mentioned previously, the problem of interaction between

forced deformation and column failure is probably more serious in curved

than in plane webs, and fragmentary data indicate that no practical

stringer section may be completely free from interaction effects.

Since it appears that there will be some interaction in most cases,

the investigation of reference 34 was carried out in the region where

the interaction is clearly large; namely, on stringers designed to fail

by forced crippling in the case of pure-torque loading. Five cylinders

of identical construction were built; one was tested in pure compression,

one in pure torsion, and the other three in combined compression and

torsion. The results were fitted by the interaction formula

(T_I'5 P = 1.00 (64)

where T and P are the torque and the compressive load that cause

stringer failure when acting simultaneously, T o is the torque causing

stringer failure when acting alone, and Po is the compressive load

causing stringer failure when acting alone. When this formula is used,
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it is not necessary to compute the stringer stress by the method described

previously for combined loading; a stringer-stress computation is made

only for the case of a pure torque to calculate T o . Ideally_ the load

Po would also be calculated, but at present it would be safer to obtain

this load by a compression test on one bay of the complete cylinder, or

on a sector of this bay large enough to contain at least five stringers.

12. General Applications

The discussions and formulas for curved diagonal tension have been

given on the assumption that the structure considered is a circular

cylinder. Evidently, more general types of structure may be analyzed

by the same formulas by the usual device of analyzing small regions or

individual panels. The questions of detail procedure that will arise

must be answered by individual Judgment, because more general methods

are not available at present. The results will obviously be more

uncertain, for instance, if there are large changes in shear flow from

one panel to the next. It should be borne in mind that in such cases

problems in stress distribution exist even when the skin is not buckled

into a diagonal-tension field; the existence of these problems is often

overlooked because elementary theories are normally used to compute the

shear flows.

13. Numerical Examples

As numerical examples of strength analyses of curved diagonal-

tension webs, two cylinders will be analyzed that were tested in the

investigation of reference 34. The cylinders were of nominally iden-

tical construction and differed only in loading conditions. They had

12 stringers of Z-section and rings also of Z-section. The rings were

notched to let the stringers pass through them. Clip angles were used

to connect the stringers to the rings and at the same time to reinforce

the edge of the notch. The analysis will be made for the test loads

that produced failure. The third example illustrates the calculation

of the angle of twist for the cylinder used in the first example.

Example 1. Pure torsion.- The example chosen is cylinder 1 of

reference 34. The material is 2hS-T3 aluminum alloy.

Basic data:

R = 15.0 in.

E = 10.6 × 10 3 ksi

t = 0.0253 in.

= 0.32

d = 15.0 in.

h = 7.87 in.

_R2(I, _ 2): 675
G = &.O × 10 3 ksi
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Stringers: Z-section 3 x i x 3 x 0.040; AST = 0.0925 in. 2

_n_s:Zse_t,on¼x__xO0_;*_0=0_,,n_
Nominal shear stress:

388

2 x 675 x 0.0253
= 11.36 ksi

Buckling stress:

Z __

7.872

15.0 x 0.0253
_i - 0.322 = 155

From figure 30: k s = 35

Vcr = 35

_2 x 10.6 x 103 x 7.872

12 x 152 x 1552

= 3.50 ksi

Loadin_ ratio:

T I1.36

Tcr 3.50
- 3.24

Dia_onal-tension factor:

td
30o _-_ = 30o

0.0253 x 15.0

15.0 x 7.87
= 0.965

From figure 13: k = 0.63

First approximation for angle of diagonal tension:

dt 15.0 x 0.0253
RR .... I. 513

ARG O. 251
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RS = ht = 7.87 × 0.0253 = 2.155
AST 0.0925

i+ RS
- i.256

I+RR

h_TE- 7.87_i0.6 × i03R 15.0 ii. 36

ql + R R _i + 1.513

= i0.i

From figure 28(a): mPDT : 32"30

From figure 32:

= 32.3 ° x 0.90 = 29.0 °

Stress snd strain formulas:

From formulas (51) 8nd (52):

_ST = -

0.63 × ii.36

0.465 + 0.5(1 - 0.63)

cot _ = -11.03 cot _ ksi

gST = -i.04 x 10-3 cot

aRG = _

0.63 x 11.36 tan

0.660 + 0.5(1 - 0.63)
= -8.46 tan _ ksi

_RG = -0.800 X 10-3 tan
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= i1.48 x 10-3

= i.o7 × lO-3
E

First cycle:

_ = _9 O

From figure 31:

tan m = 0.554 cot _ = 1.805

_E
-- = 1.90
T

= 1.90 x 1.07 x i0 -3 = 2.035 x 10-3

_ST = -1.04 x 10-3 x 1.805 = -1.875 × 10-3

:ii

_j

_RG = -0.800 × 10-3 × 0.554 = -0.444 x 10-3

According to formula (}$4):

tan2 _ = 2.035 + 1.875
2. 035 + O. 440 + ii. 48

= o.28o

tan _ = 0.529

Second cycle:

The final value of _ is closer to the computed value of the pre-

ceding cycle than to the initially assumed value; therefore, take as the

next approximation

tan _ = 0.529 + _ (0.554 - 0.529) = 0.535

cot _ = 1.87 _ = 28°i0 '
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From figure 31:

_E
-- = 1.9e ;
T

= 1.92 x 1.07 x I0-3 = 2.054 x 10-3

_ST = -Z.04 x 1o-3 x 1.87 ---1.945 x 1o-3

gRG = -0.800 x 10-3 x 0.939 = -0.427 x 10-3

tan2_ = 2.094 + 1.949 = 0.286

2.094 + 0.427 + ii.48

tan = = 0.939

The computed value of tan _ checks the assumed value; the second cycle

Is therefore the final one.

Stresses:

aST = _ST x E = -1.949 x 10 -3 x 10.6 x 103 = -20.6 ksl

_RG = _RG x E = -0.427 x i0-3 x i0.6 x 103 = -4.94 ksl

Note: The last strain measurements in the test were taken at

99 percent of the failing torque. The extrapolation to lO0 percent gave

a stringer stress of -20.20 ksi, which is numerically less than the cal-

culated value by 2 percent.

Web strength:

Th_ calculated skln stress being 11.36 ksi, inspection of figure 19(a)

shows that there is a large margin (about 50 percent) against skin rupture.

Strlnsers 2 column failure:

The radius of gyration of the stringer section is O.hO8 inch; therefore,

a__: 18.4
2p
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This slenderness ratio is so low that there is obviously a large margin

against column failure at the computed value of stringer stress.

Strin_ers_ forced-cripplin_ failure:

From figure 15:
_max

- i. 16

eSTma x -20.6 × 1.16 = -23.85 ksi

tST O. 0404
- = 1.60

t 0.0253

From figure 20: Go = -22.3 ksi

Note: The "design allowable" value of the stringer stress (-22.3 ksi)

is 7 percent greater than the calculated value of -23.85 ksi. Therefore,

the calculation would have predicted failure at a torque 7 percent lower

than the actual failing torque, that is, the calculation is 7 percent

conservative. The "best possible estimate" of the allowable stress (based

on the middle of the scatter band instead of the lower edge) would be

25 percent higher than the "design allowable" value; a strength predic-

tion based on this value thus would have been 18 percent unconservative.

Example 2. Combined loading.- The example chosen to demonstrate the

analysis of a cylinder under combined torsion and compression is cylin-

der 5 of reference 34. In order to simplify the demonstration by making

use of partial results obtained in example l, it will be assumed that

the dimensions given for example 1 apply; actually, some of the dimensions

differed by as much as 2 percent.

Basic data:

Dimensions as in example i.

T = 303 inch-kips P = -13.9 kips

Compression area:

12 stringers = 12 x 0.0925 = i. Ii in. 2

Sheet (100%) = _ x 30 x 0.0253 = 2.38 in.2

Total 3.49 in.2
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Basic stresses:

7cr,O = 3.50 ksi (see example I)

acr,O = -5.95 ksi

The latter value is computed according to the recommendations of refer-

ence 35 with an empirical reduction factor.

At the design loads_ the nominal stresses are

a = -13._____5= -3.87 ksi
3._9

303

34.2
- 8.86 ksi

Interaction factors:

From formulas (57):

A- 3.5o _ 0.588 B = 8.86_-2.29
-5.95 -3.87

RT = 0.878 Rc = o.228

Vcr = 0.878 x 3.50 = 3.07 ksi _cr = -0.228 x 5.95 = -1.356 ksi

Compressive stress due to axial load:

From formulas (62) and (61), respectively

D = 0.445 x 2.155 x 0.228 x 1,_-_= 0.254

oCST = -10.55 ksi ECsT = -0.996 x lO-3
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Dia_onal-tension factor:

T 8.86
- - 2.88

Tcr 3.07
k = 0.59

Stress and strain formulas:

From formula (63):

_TsT = _

0.59 X 8.86 cot

o.465 + o.5(i - 0.59) x 0.878

= -8.10 cot _ ks i

_TsT = -0.764 X 10 -3 cot

From formula (52):

sTRG = _

0.59 x 8.86 tan c_

0.660 + 0.5(1 - 0.59)

= -6.05 tan _ ksi

gRG = -0.570 X 10 -3 tan

Computation cycle:

Only the last cycle will be shown here. This computation is essen-

tially the same as for a case of pure torsion (example i), except that

the stringer strain due to axial load _CsT ) is added to the strain due

to the torque _TsT )-

The first approximation to the angle _ may be obtained by disre-

garding the compression, that is to say, in the same manner as in

example 1. An analyst with some experience may improve this approxima-

tion by adding a correction for the effect of the axial load (compression

load will steepen the angle).

Assume m = 28°30'; tan _ = 0.543; cot _ = 1.84%
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From figure 31:

_E = 1.86
T

= 1.86x
8.86

I0.6 × 103
= 1.952 x lO-3

From the strain formulas:

gTsT = -0.764 × 10-3 × 1.84 = -l. hO5 × 10-3

_RG = -0.570 x 10-3 x 0.543 = -0.310 x 10-3

tan2_ = 1.552 + 1.405 + 0.996 = 0.296

1.552 + 0.310 + ll. h8

tan _ = 0.544

This result agrees with the assumed value within the accuracy of

calculation and thus constitutes the final value.

By the stress formulas

-8.10 -14.90 ksi
a%T = 0.544 =

Therefore the total stringer stress is

_ST = -14.90 - 10.55 = -25.45 ksi

The value measured (on a cylinder with slightly different actual

dimensions) was -25 ksi.

Failure:

Since the torque is much less than in example 1 (pure-torque case),

there is a wide margin against web rupture.
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The margin against stringer failure is evaluated by formula (64).

According to test (reference 34), the cylinder failed under pure com-

pression at Po = 42.0 kips. Under pure torque, the test gave

T o = 388 inch-kips: (the calculated value of To (example l) is 7 per-

cent lower). Thus, with the "design loads" T = 303 inch-kips and

P = 13.5 kips

l.5 + P = {3o3h1-5P--O _3-_}

+ 13.9 _ 1.01
42.0

Note: Because the "design loads" T and P used in this example

were actually test failing loads and because the interaction curve was

based on a series of tests on cylinders of these dimensions, the calcu-

lated value of 1.01 indicates that the analytical expression chosen for

the interaction curve fits this particular test very well.

Example 3. Angle of twist.- In this example, the angle of twist will

be calculated for the cylinder of example 1 at the failing torque.

According to example l:

tan = = 0.535 ; cot = = 1.87 ; sin 2= = 0.832 ; k = 0.63

By formula (31b):

0.5352 1.872
E= + +

GET 0.8322 0.660 + 0.5(1 - 0.63) 0.465 + 0.5(1 - 0.63)

E 5.77 + O. 34 + 5.39 ii. 50

E 10.6 × lO 3

i1.50 ii.50

= 0.922 × lO 3 ksi
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By formula (31a):

__!__1 = 0.37 + 0.63

GIDT 4 x 103 0.922 × 103

= o.775 × io-3

= 0.0925 × 10-3 + 0.683 × 10-3

i

GID T = 1.29 × 103 ksi

The torsion constant for the polygon section is

J = 2 x _ x 153 x 0.0253 1 - 2-_ x 0.5242 = /*92

For a length of 60 inches, the angle of twist is

TL 388 × 60
--= = 0.0366 radian

GIDTJ 1.29 × 103 × 492

Langley Aeronautical Laboratory

National Advisory Committee for Aeronautics

Langley Field, Va., October 5, 1951
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APPENDIX

POI_AL-FRAMEEFFECT

In the stress analysis of plate girders of constant depth, it is
customary to assumethat the shear web carries the entire shear. This
assumption is usually a very good one, but it maybecomeinaccurate
under someconditions. If the flanges are heavy and deep, the portion
of the shear carried by the flanges may becomeappreciable; this condi-
tion is aggravated by the yielding of the web-to-flange attachments and
of the web, when the formulas of the elementary beamtheory begin to
break down.

The tip bay of a plate girder is usually reinforced by a web doubler
plate. If the unreinforced portion of the web is removed completely,
there remains a "portal frame" (fig. 38) consisting of the two flanges
connected by a built-up transverse member. This portal frame can carry
a shear load which maybe appreciable comparedwith the shear load
carried in the web. A rough approximation of the portal-frame shear may
be obtained under the following assumptions:

(a) The transverse memberin the frame is sufficiently stiff to
maintain the right angles between this memberand the flanges

(b) The deflections of the portal frame and of the shear web are
independent of each other except at the tip

The deflection of the shear web under a load of unit magnitude is

The deflection of the portal frame under a load of unit magnitude is
approximately

where I is the momentof inertia of one flange. Under assumption (b),
the ratio of the shear carried by the web to the total shear is

S' 1 1

51 1 + 24EIS I+--

52 L2htGe
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Test evidence suggests that it would be wise not to count on

portal-frame effect in routine strength predictions (Part II,

section 2.4). Conversely, however, it would seem wise to reduce

allowable web stresses deduced from special tests if the flanges

of the test beam are much stiffer than those in the actual airplane

structure.
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(o) (b)

Figure I.- Gross sections of built-up beams.

(c).

Figure 2.- (See next page.)
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(a) (b) (c)

Figure 3.-Principle of diagonal tension.
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Figure 4.- Forces in diagohal- tension beam.
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(a)

Figure 5.- Secondary actions in diagonal-tension beams .
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Figure 6.-Effect of diagonal tension on column length of uprights.
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Figure 7-Ratio of effective to actual area of uprights
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Figure 8.-Stress systems in diagonal-tension webs.
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Figure 9.-Assumed distribution of

vertical compressive stresses in

sheet just buckled.

6 __-_.o._,_. ,.o_L/_/ "
/

21_ I.-",/ - r I

- "_ -Engmeertn9 theory

0 .I 2 5 4 5

Pumax. _-_--_

P

Figure I0-Upright forces by two theories

PUmox= a'UrnaxAU -

_; ;._ ._,

Figure I I.-Foilure of upright by forced crippling.
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Figure 27.-Diagonol tension in curved webs.

Figure 28-See next page.
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Figure 29.-For'ces on floating rings.
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